ReidOn Tuesday, November 25, 2014, Dr. Tahira Reid visited AME for a seminar presentation. Her seminar presentation was titled, “The Influence of Social and Cultural Considerations on Engineering and Design.”

Abstract: In this talk, Dr. Reid will discuss two projects to illustrate how social and cultural considerations influence design methods. In the Beauty of Mechanical Engineering project, Dr. Reid and her students are conducting experiments to understand how heat moves through curly hair and the mechanisms that cause permanent structural changes in the hair (i.e., heat damage). Currently, trained professionals in the hair industry cannot predict when heat damage will occur and often rely on heuristics and intuition in their hair care approaches. In addition, scientists that have conducted studies with heat and hair have often used Caucasian hair which cannot be generalized to all ethnic groups; they have also conducted experiments that are not ecologically consistent with individuals’ use context. As a result, a number of lay scientists have emerged whose use of contexts are ecologically valid, but are lacking the experimental and quantitative rigor that engineers can provide. With hair care being a multi-billion dollar industry and having meaning for a vast majority of the population, research of this kind is important. In the Socially Conscious Design project, Dr. Reid and her students are exploring ways that compassion can help with problem framing and enhancing design solutions. There are some product interactions, namely in medical environments, in which the design of a product/system elicits fear and anxiety within individuals. The ultimate goal of this research is to use interdisciplinary methods to examine ways in which these emotional needs can be considered during the design process.

Bio: Dr. Tahira N. Reid is an Assistant Professor in the School of Mechanical Engineering at Purdue University and is the director of the Research in Engineering and Interdisciplinary Design (REID) Laboratory. Her research interests include developing methods that help engineers think critically about non-technical issues and their impact on engineered design solutions. Prior to arriving at Purdue in 2011, she completed a postdoctoral fellowship in the Mechanical Engineering department at Iowa State working in the Interdisciplinary Research in Sustainable (IRIS) Design Laboratory under the mentorship of Erin MacDonald. In 2010, she received her Ph.D. from the University of Michigan in Design Science, with Mechanical Engineering and Psychology as her focus areas. Dr. Reid received both her B.S. and M.S. degrees in Mechanical Engineering from Rensselaer Polytechnic Institute in 2000 and 2004, respectively. She received national attention for patenting a childhood invention: a Double Dutch jump rope device. In 2000, she exhibited her device at the Smithsonian during the Playful Mind’s exhibit and demonstrated it on NBC’s Today Show. Her story has been featured in numerous news media sources and is featured in two children’s books.

On October 25, 2014 students of OU’s American Institute of Aeronautics and Astronautics (AIAA) attended the Society of Flight Test Engineer’s Symposium at the Worthington Hotel in Fort Worth, Dallas. The symposium was attended by companies like Bell Helicopter, Lockheed Martin, Bombardier and Scaled Composites. The event was directed by the high level test engineering field engineers and was an eye-opening experience for the students.

SFTE

 

 

 

 

 

 

 

“This was the greatest opportunity of my college career to meet and socialize with industry professionals.”- Josiah Lund, President AIAA

In addition to the symposium, the students also had the opportunity to visit the Lockheed Martin to see the F35 Assembly Line and Simulators. Several students also went to Love Field to visit the Maintenance and Engineering Department of Southwest Airlines. These events are very important to both inspire the students and also create valuable relationships with potential mentors in the industry.

“I really like that our sophomores were able to visit a company. The F35 line was exhilarating!” – Bipin Varghese, PR AIAA

SFTE

AbotOn Wednesday, November 12, 2014, Dr. Jandro Abot visited AME for a seminar presentation. His seminar presentation was titled, “Self-Sensing Composite Materials Using Carbon Nanotube Yarns: A New Paradigm in Structural Health Monitoring.”

Abstract: Composite materials are widely used in aerospace structures and many applications because of their superior specific stiffness and strength respect to weight. However, monitoring their structural health still remains too complex and difficult to implement in an integrated and distributed manner. This presentation is about integrated structural health monitoring in polymeric and composite materials using carbon nanotube yarns. Carbon nanotubes are grown into arrays that can be drawn into webs and further twisted into yarns that contain thousands of carbon nanotubes in their cross-sections. These carbon nanotube yarns are lightweight, stiff, strong, ductile and electrically conductive fiber-like materials that we are studying as piezoimpedance-based sensors. The proven concept of real-time, integrated, and widely distributed damage detection and strain measurement using carbon nanotube yarn sensors is presented including the latest experimental results. The coupled mechanical, electrical and thermal response of the carbon nanotube yarns is of significant importance for their use as sensors and recently obtained results are presented including a not-before observed negative piezoresistance response. The effect of composition and structure of the carbon nanotube yarns on that coupled response is also discussed. The present challenges and proposed approaches for robust real-time structural health monitoring that eventually leads to condition-based maintenance are outlined for aerospace structures and other components, devices, and structures.

Dr. Jandro Abot is an Associate Professor in the Department of Mechanical Engineering, Director of the Intelligent Materials Laboratory, and Director of International Engineering Program Development of the School of Engineering at The Catholic University of America. He was previously an Assistant Professor in the Department of Aerospace Engineering and Engineering Mechanics at the University of Cincinnati. Prior to that, he was a Postdoctoral Fellow at Northwestern University where he had received his Ph.D. and M.S. degrees in Theoretical and Applied Mechanics. Dr. Abot also holds a 6-year degree in Structural Engineering from the Universidad de la República in Montevideo, Uruguay. Dr. Abot’s expertise is on the science and technology of composite materials and structural health monitoring of structures using carbon nanotube-based sensors. Dr. Abot authored or co-authored one hundred journal and proceeding papers and led research projects sponsored by AFOSR, NASA, and Fulbright and collaborated on projects sponsored by NSF, ONR, and industrial consortiums. Dr. Abot taught nineteen different engineering courses in Solid Mechanics, Materials Engineering, Experimental Mechanics and Introduction to Mechanical and Aerospace Engineering, always receiving very good students’ evaluations. Dr. Abot is always committed to advising many graduate students and mentoring undergraduate students in the framework of research projects, and actively engaged in many departmental and school service activities such as recruitment, accreditation and international programs.

BOA Fall 2014The School of Aerospace and Mechanical Engineering Board of Advisors attended their annual fall meeting on Friday, November 7, 2014. The BOA had a busy day with a full agenda. They held their meeting in the Hitachi Conference Room in Felgar Hall. In addition, the Chesapeake Scholars were invited to the luncheon with the BOA and received their Chesapeake Scholars certificate from BOA Chair and Chesapeake Vice-President, Dave Bert. The Chesapeake Scholars are Morgan Andersen, David Doshier, Cameron Riney and Timothy Willis.

David Doshier & Dave Bert

David Doshier & Dave Bert

Timothy Willis & Dave Bert

Timothy Willis & Dave Bert

DSC_0905The School of Aerospace and Mechanical Engineering Graduate Student Community (GSC) hosted their first research poster fair on Tuesday, November 4, 2014 at Devon Energy Hall. The student participants were all AME graduate students ranging from first-year graduate students to those nearing Ph.D. completion. The fair hosted over 15 participants who presented their research ranging from theoretical modeling research to experiment-based research. Three judges evaluated each participant’s poster and information along with a five minute explanation of the research from the participant. The judges were Dr. Yingtao Liu, AME Assistant Professor; David Campbell, Engineer at Tinker Air Force Base; and Beth Murray, Career Manager of Engineering Workforce Development at Tinker Air Force Base.

The hope of the poster fair was to provide students with presentation experience as well as respond to the judges challenging questions and critiques.

“Anybody can get up and do a slide show presentation, but when you have someone who actually knows [what] you’re talking about, they’re going to ask you critical questions,” Stewart Ohler, Ph.D. candidate, said.

The GSC awarded the top four winners with a cash prize and a certificate. The winners were as follows:

1st Place: Arun Balakrishnan (Ph.D. Candidate, Aerospace Engineering)

2nd Place: Lucas Balmer (Master’s Degree Student, Mechanical Engineering)

2nd Place: N. Anand Balu (Master’s Student, Mechanical Engineering)

2nd Place: Maryam Sabeghi and Jelena Milisavljevic (Master’s Students, Mechanical Engineering).

Congratulations to the winners and congratulations to the GSC for a successful event!

GSC Poster Fair

 To view more photos of the event, please visit our Facebook Page.

Subscribe

Follow this blog

Get every new post delivered right to your inbox.

Skip to toolbar