Professor Subramanyam Gollahalli, Lesch Centennial Chair at the University of Oklahoma (OU) School of Aerospace and Mechanical Engineering (AME), retired and transitioned to emeritus status in May 2017, after 41 years of service at OU (52 years including his tenure at the Indian Institute of Science, India and the University of Waterloo, Canada). His service included eight years of directorship at AME.

His distinguished career was marked by many awards from various professional organizations and many recognitions from OU, including the Regents Superior Teaching Award and Regents Professional Service Award. A few of the awards bestowed upon Professor Gollahalli are the Westinghouse Gold Medal, the Energy Systems Award, the Ralph James Award, the Ralph Teetor Award, the Samuel Collier Award and the Sustained Service Award.

Professor Gollahalli’s research in energy and combustion involved many experimental studies. He founded the internationally-recognized Combustion Laboratory, where he mentored over 100 graduate students (M.S. and Ph.D.) and post-doctoral associates and produced nearly 300 publications. He involved many undergraduate students in his laboratory research as well.

Professor Gollahalli strongly believes that “hands-on experimental experience” is an essential component of engineering education to prepare well-rounded engineers. He was the founding chair of the AME Laboratory Committee (1989), in which capacity he served until retirement (with a break during his directorship). He was the author of the “AME Lab Plan” required by the accreditation agency, which provides guidelines for various laboratories (two required labs and five elective labs). It deals with coordination, safety aspects and general guidelines for funding and conducting laboratory courses. During his tenure as the chair, he raised funds and arranged allocation of funds through the Lab Committee to modernize the lab education to keep pace with technological innovations.

“Dr. Gollahalli is a truly dedicated professor, he inspires his students to solve problems and make a difference,” said Sai Gundavelli, AME alum.

His passion for giving students hands-on experience resulted in the modernization of the AME machine shop with numerically controlled equipment. During his directorship, he gave priority to funding labs and the machine shop in which students were given the opportunity to work by themselves under the supervision of machine shop staff.

The capstone design project program, which involves industrial projects, saw a major growth in size and increase in funding during his directorship. The AME Capstone Project Poster Fair, where students exhibit their hands-on developed creations and win awards at the conclusion of judging by the industry personnel, became an annual popular event during his term as the director.

During his tenure as the director, he encouraged and supported the student competition activities, such as Sooner Racing Team, Human-Powered Vehicle Team, Robotics Team and Design-Build-Fly Team. The teams facilitated direct student involvement in designing, manufacturing and competing in national events. He personally attended some of the competitions to encourage students. He took great pleasure and felt proud when the teams achieved high national rankings.

When Professor Gollahalli stepped down from the directorship after eight years, the AME Board of Advisors started a fund to honor his legacy, which was intended to support the undergraduate laboratories. Now, after his retirement, to mark his passion and belief in providing valuable laboratory hands-on experience to students, Professor Gollahalli’s family decided to make a significant contribution to this fund to make it a permanent endowment, which will serve as a source of funding for this cause.

“I am grateful to the AME Board of Advisors for establishing Gollahalli Legacy Fund to support instructional labs. I thank my wonderful students and friends for their generous donation for this cause, which will facilitate production of well-rounded future AME engineers,” said Professor Gollahalli.

The School of AME requests your contributions to this fund to mark your name and help fulfill Professor Gollahalli’s long-standing desire. To contribute to the Gollahalli Legacy Fund please visit: https://giving.oufoundation.org/OnlineGivingWeb/Giving/OnlineGiving/Gollahalli

 

The Sooner Rover Team Thousands Strong campaign launched in October and ends November 10, 2017. The team has a goal of raising $10,000, with “giving levels” starting from as low as $5.00. With 10 days left, the team could use the generous help of our alumni and AME friends!

To donate to the Sooner Rover Team Thousands Strong Campaign, click here.

Our Team

The Sooner Rover Team was founded in the Fall semester of 2015 by a small group of students that were interested in space and robotics who saw a very successful competition year, bringing home the highest score the NASA RASC-AL Robo Ops Competition has ever seen! Since then, the team has grown to more than 60 students who are eager to manufacture a competition ready rover. We will be taking on the same competition as last year: The University Rover Challenge! Among the students on the team over 10 majors are represented including Aerospace, Computer, Electrical, and Mechanical Engineering, Computer Science, Geology/Geophysics, Mathematics, and Astrophysics.

Our Need

We need your support! Let’s start off by saying that $10,000 is a very beginning goal for us and we are aiming to raise at least 15,000!! Last year, the team raised over $17,000 with the help of supporters like you. This year, the University Rover Challenge aims to once again test the bounds of our team. This is an exciting task for the Sooner Rover Team and we can’t wait to overcome the new challenges set before us. We ask for your support to help us achieve success, once again, for our team and for our University. We promise, as a team, that your contributions will be used to bring us closer to our final product and are extremely grateful for each and every act of support! BOOMER SOONER!

Our Rover

The Sooner Rover is based off of a Russian design concept (the Marsokhad) and this will be the third year we compete with this design. We believe it was our take on this design, along with a unique control system, that has set us apart. We plan to keep the best of what we had last year and improve in every area that we can. This year’s rover will also need on board equipment to run scientific analysis that will determine characteristics such as soil humidity and subsurface temperature. These improvements, however, will require better parts and cost more money.

Our Competition

The Sooner Rover Team will be competing in the 2018 University Rover Challenge from May 31st – June 2nd. The competition will be held at the Mars Society’s Mars Desert Research Station (MDRS) near Hanksville, Utah. Teams will face a variety of obstacles and are required to be completely untethered (wireless) and controlled from a remote location along with navigating terrain challenges, autonomous traversal, science caching, retrieval and delivery tasks, and more. Only with your support can we bring home a victory!

UPDATE:

Thank you to everyone who donated to the Sooner Off-Road team Thousands Strong campaign! The team ended their successful campaign on November 3, 2017 with 127% of their goal reached, a total of $6,385 raised.


The Sooner Off-Road team launched their Thousands Strong campaign in October and the campaign ends November 3, 2017. The team has a goal of $5,000, with various levels of donation starting from $5.00. Every little bit counts!

To donate to the project, click here. To learn more about the project, please read further.

Our Project

The project for Sooner Off-Road in the 2017-2018 Baja SAE (Society of Automotive Engineers) Competition Season is to design and manufacture a brand new mini baja car for the Baja SAE competition in late May 2018. We will compete against hundreds of schools across the world in a 3-day competition that includes a design and sales presentation and a multitude of tests including static testing, dynamic testing, and a four-hour long endurance race.

Impact of Our Project

This project provides students with the opportunity to get real-world engineering experience and to apply the knowledge they learn in the classroom to a project that is all their own. We also have a community outreach program to promote STEM learning in elementary schools. We do this by helping these students once a week with a project such as building a car powered by a fuel cell. We plan on using any funds we raise to pay for materials needed to build the vehicle and components that we are unable to build ourselves. We also plan to use funding to pay for the research and software needed to build our vehicle.

Please Share

It would be very helpful if you could share our website with your friends, family and colleagues.

Thank You

Our project is only possible with your generous donations! Your support provides us with the unique opportunity to thrive in our learning experience.

bergey-aerospace-cougar-ame On July 14, 2017, the Bergey Aerospace BA-14-001 “COUGAR” conducted its first flight from the local Max Westheimer airport marking the start of its flight test program, and the continuation of a project that has been with the University of Oklahoma’s College of Engineering School of Aerospace & Mechanical Engineering for nearly two decades.

Well-known as one of the original designers of the Piper Cherokee, retired AME professor and president of Bergey Aerospace, Karl H. Bergey, first envisioned the high-cruise-speed, 4-seat, propeller-driven aircraft in the 1990’s as an enhanced Piper Arrow capable of a true 200 mph or greater cruise speed. He solicited the help of OU engineering students over the years to complete the design, construction and now test flights of the aircraft.

bergey-aerospace-cougar-ame

According to Jawanza Bassue, volunteering project engineer and 2017 OU AME M.S. graduate, “The COUGAR has and continues to be a teaching tool for Oklahoma’s students – not just at the OU College of Engineering but, for life-long-learners (including OKC MetroTech Aviation Campus students) who have volunteered their time and efforts to see the aircraft to this point – I thank them all for what we’ve done together.” He recognizes the recent contributions of Jet Black Machine, Quality Aircraft Accessories, the FAA (especially the contributions of OU AME Board Member and  Mike Monroney Aeronautical Center Director Michelle Coppedge), the OU Information Technology Department and the School of Aerospace & Mechanical Engineering. “It’s my hope that the College of Engineering will find more great ways for our students to benefit from having this platform available. I’m interested in hearing what the OU COE community has in mind for continued student involvement in this project – true course credit for flight test engineering-related activities and the opportunity to build another aircraft are all entirely possible. It’s not everyday students and volunteers get to take some credit for getting a 3000 lb, 35 ft wide aircraft airborne and we should be very proud of that.”

bergey-aerospace-cougar-ame

The aircraft was displayed at the Aircraft Owners and Pilots Association (AOPA) fly-in September 8-9 in Norman at the Max Westheimer Airport – an event that was open to the public and drew thousands of aviation enthusiasts as well as other airshows from across the Nation. For updates and information follow the Bergey Aerospace Facebook page or visit www.bergeyaero.com.


Written by: Jawanza Bassue

ou-giving-day-ame

The inaugural OU Giving Day was February 28, 2017. It was a 24-hour online fundraiser for scholarships to give everyone the opportunity to make an impact in the lives of OU students.

The funds raised on OU Giving Day go directly to the Gallogly College of Engineering unrestricted scholarship fund. Scholarships through this fund will be awarded to undergraduates and graduate students in any of the College’s seven schools of any major and awarded in 2017.

Gallogly College swept 2 of the 3 University competitions and will receive an additional $2,000, bringing the OU Giving Day total to $30,386! This means that 30 students will receive a scholarship this fall, and YOU made that possible.

1st Place: Most New Donors, with 138. 62% of those that gave to GCoE made their first gift!

1st Place: Most Dollars Raised

Each department within Gallogly College competed to raise the most money and the results are in!

1st Place – Aerospace and Mechanical Engineering 

2nd Place – Computer Science 

3rd Place – Industrial and Systems Engineering

Our very own Director Altan donated and even made a video to encourage others to participate.

Thank you to everyone who donated!

al-roker-ou-sooner-race-team-ame

Al Roker from the Today Show delivered a 34-hour long weather forecast for the Rokerthon 2 event. He visited all 50 states and stopped in Norman, OK to break two Guinness World Records, the largest human image of a cloud and a lightning bolt. Leading up to the event, he visited the Sooner Racing Team!

For the full story, click here.

michael-zavlanos-dream-course

Dr. Michael Zavlanos visited AME on February 2, 2017 as part of Dr. Andrea L’Afflitto’s Dream Course, Modern Control Theory and Applications.

Abstract: Current robotic systems have the potential to accomplish a previously intractable scope of tasks. Their ever growing capabilities will soon allow them to operate autonomously outside the lab, in remote, unpredictable, and uncertain environments, where the presence of humans is dangerous or even impossible. For this to become possible, a fundamental challenge is to develop new methods that will enable teams of robotic sensors to collaboratively explore unknown environments and extract concise actionable information. In this talk,we present a novel approach to dynamically synthesize optimal controllers for a robotic sensor network tasked with estimating a collection of hidden states. The key idea is to divide the hidden states into clusters and then use dynamic programming to determine optimal trajectories around each hidden state as well as how far along the local optimal trajectories the robot should travel before transitioning to estimating the next hidden state within the cluster. Then, a distributed assignment algorithm is used to dynamically allocate controllers to the robot team from the set of optimal control policies at every cluster. Compared to relevant distributed state estimation methods, our approach scales very well to large teams of mobile robots and hidden vectors. We also present a distributed state estimation method that allows mobile sensor networks to estimate a set of hidden states up to a user-specified accuracy. This is done by formulating a LMI constrained optimization problem to minimize the worst case state uncertainty, which we solve in a distributed way using a new random approximate projections method that is robust to the state disagreement errors that exist among the robots as an Information Consensus Filter (ICF) fuses the collected measurements. To our knowledge, even though the distributed active sensing literature is well-developed, the ability to control worst-case estimation uncertainty in a distributed fashion is new. We present numerical simulations and experimental results that show the efficiency of the reposed methods.

Bio: Michael M. Zavlanos received the Diploma in mechanical engineering from the National Technical University of Athens (NTUA), Athens, Greece, in 2002, and the M.S.E. and Ph.D. degrees in electrical and systems engineering from the University of Pennsylvania, Philadelphia, PA, in 2005 and 2008, respectively. From 2008 to 2009 he was a Post-Doctoral Researcher in the Department of Electrical and Systems Engineering at the University of Pennsylvania, Philadelphia. He then joined the Stevens Institute of Technology, Hoboken, NJ, as an Assistant Professor of Mechanical Engineering, where he remained until 2012. Currently, he is an assistant professor of mechanical engineering and materials science at Duke University, Durham, NC. He also holds a secondary appointment in the department of electrical and computer engineering. His research interests include a wide range of topics in the emerging discipline of networked systems, with applications in robotic, sensor, and communication networks. He is particularly interested in hybrid solution techniques, on the interface of control theory, distributed optimization, estimation, and networking. Dr. Zavlanos is a recipient of the 2014 Office of Naval Research Young Investigator Program (YIP) Award, the 2011 National Science Foundation Faculty Early Career Development (CAREER) Award, as well as Best Student Paper Awards at GlobalSIP 2014 and CDC 2006.

chevron-executives-visit-ou

On October 18th, 2016, Chevron Executives Ken Nelson, Bill Hunter and Brent Walton visited AME. Dr. Cengiz Altan and Dr. Zahed Siddique spoke with them about the School of Aerospace and Mechanical Engineering’s mission, provided a talent overview and presented opportunities to engage with AME students.

chevron-executives-visit-ou-2

Following the meeting, the Chevron executives attended a lunch and check presentation ceremony. Four AME students received the Chevron-Texaco Scholarship for the Fall 2016 semester. The scholarship recipients, Patrick Ahearn, Joseph Esparza, Ciore Taylor, and Joshua Tims, were invited to the luncheon where the guests presented the donation check. Congratulations!

jerry-qi-guest-lecture

AME hosted a guest lecture given by Dr. H. Jerry Qui on Monday, October 24, 2016. Dr. Qi presented his research regarding the design of active composites for 4D printing applications.

Recent advances in multimaterial 3D printing allow the precise placement of multiple materials at micrometer resolution with essentially no restrictions on the geometric complexity of the spatial arrangement. Complex 3D solids thus can be created with highly non-regular material distributions in an optimal fashion, enabling the fabrication of devices with unprecedented multifunctional performance. This also enables the emerging concept of 4D printing.

In his talk, Dr. Qi started with the concept of 4D printing, where he prints a composite in a relatively simple shape; after printing and some thermomechanical programming, the composite can change its shape as a function of time, the 4th dimension of the shape forming process. He further showed different designs to achieve the shape change, such as printed active composites and direct printing shape memory materials. To further enhance the functionality of the 4D printing, Dr. Qi explored the printing of conductive wires that can be used either for electric signal transfer or as heating elements. He investigated how different curing methods of the conductive ink can affect the electric properties as a function of strain.

jerry-qi-guest-lecture-2

Based on the knowledge learned, Dr. Qi can fabricate a stretchable electronic device in a sequential process. He demonstrated a stretchable LED circuit, a heating element for shape memory polymers, and a sensor to detect shape change. This method provides the opportunity to print complex 3D stretchable electronics, which will be integrated with 4D printing for topology transferring devices. Finally, Dr. Qi discussed the challenge and future directions for 4D printing.

Bio: Dr. H. Jerry Qi is Professor and the Woodruff Faculty Fellow in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. He received his bachelor degrees and graduate degree from Tsinghua University and a ScD degree from Massachusetts Institute of Technology. After one year postdoc at MIT, he joined the University of Colorado Boulder as an assistant professor in 2004, and was promoted to associate professor with tenure in 2010. He joined Georgia Tech in 2014 and was promoted to a full professor in 2016.

Prof. Qi’s research is in the broad field of nonlinear mechanics of soft materials and focuses on developing a fundamental understanding of multi-field properties of soft active materials through experimentation and constitutive modeling then applying these understandings to application designs. He and his collaborators have been working on a range of soft active materials, including shape memory polymers, shape memory elastomeric composites, light activated polymers, covalent adaptable network polymers, for their interesting behaviors such as shape memory, light actuation, surface patterning, surface welding, healing, and reprocessing. Recently, he and his collaborators pioneered the 4D printing concept. Prof. Qi is a recipient of NSF CAREER award (2007). He is a member of Board of Directors for the Society of Engineering Science. In 2015, he was elected to an ASME Fellow.

At the fall 2015 School of Aerospace and Mechanical Engineering Board of Advisors’ meeting, Michelle Coppedge and Monica Browning Mitchell were first-time attendees as they joined AME Board of Advisors. As new members, Michelle and Monica provided valuable input and a fresh outlook during the bi-annual meeting.

Meet Michelle

Coppedge WebMichelle Coppedge is an AME alumna graduating with a Bachelor of Science in mechanical engineering in 1988. She then attended Oklahoma City University where she earned her Master of Business Administration in 1991. Lastly, Michelle completed her Master of Science in industrial engineering at Purdue University in 1995.

Ms. Coppedge has 25 years of experience working as an engineer and overseeing engineers in both private industry and government. She worked 14 years at AT&T/Lucent Technologies, serving as the Director of Engineering, before moving to the Federal Aviation Administration (FAA). Michelle currently serves as the Center Director for FAA’s Mike Monroney Aeronautical Center (MMAC). The MMAC is the second largest contingent of FAA employees outside of Washington, DC, employing 6,300 federal and contract employees, as well as hosting/training around 1,000 Air Traffic Control students.

Michelle was anxious to join the AME BoA. “I am passionate about engineering, the University of Oklahoma and investing in the future of young students that want to grow and develop,” Michelle said. “I hope to add more perspective from the aerospace industry to the board discussions.”

Meet Monica

Monica WebMonica Mitchell Browning is an alumna from the University of Oklahoma earning a Bachelor of Science in industrial engineering in 1991 and a Master of Business Administration in 1994.

Ms. Mitchell has worked at AT&T since 1994. She has served in a variety of roles including Manager of Network Operations, Manager of Customer Service, Manager of RF Engineering, Manager of Switch Translations, Manager of Regional Network Operations Center, Director of Customer Care Strategy and Director of IT Mediation. Monica is currently the AT&T Executive Director of Technology. She also serves on two non-profit boards affiliated with the Air Force ROTC and the Air Force Association.

Because Monica works in the technology industry, her career and experience at AT&T along with the company’s relationship with OU has led her to join the AME BoA. “I love OU. I love mentoring students. AT&T believes that we have to partner with our local universities to increase interest in STEM programs,” Monica said. “They have encouraged us to spend time on activities like this board and to share with you the trends that we are seeing so that you can help students learn the skills that we need to see in industry.”

AME would like to welcome Michelle and Monica to the team! We thank you for your time and service to our students and our school.

Next Page →

Subscribe By Email

Get every new post delivered right to your inbox.

Please prove that you are not a robot.

Skip to toolbar