Dr. Imraan Faruque Presents Seminar over Current Research

Imraan Faruque, Ph.D., gave a presentation on Monday, March 25, 2019 on how biologically-driven flight control strategies can inform unmanned aerial vehicle swarms. Dr. Faruque is an assistant professor for the Department of Mechanical and Aerospace Engineering at OSU.

Abstract: This seminar introduces a framework for deriving feedback design principles that can enable insect-based flight control approaches on unmanned aerial systems (UAS) and engineered extensions to groups of UAS. The seminar begins by establishing flight dynamics models of dipteran flapping wing insects, combining automated high-speed videography measurements of freely flying insects, experimental aerodynamics results, rigid body dynamics, and system identification techniques to distill high fidelity flight dynamics models into computationally-tractable models applicable to flight control analysis.  Methods to extract models of the closed loop controllers implemented on insects from free flight trajectories are discussed.  Linear matrix inequalities are applied to interpret the controllers into design principles that can translate the extracted controllers into those appropriate for engineered vehicles, and improvements in experimental techniques to quantify multi-agent aerial insect behaviors.  Control-theoretic definitions of reachability are applied to the aerodynamic mechanisms involved in insect-scale flight control and gust response, leading to a theoretic framework for the gust response properties of closed-loop flight control and the engineered design of gust-aware flight controllers.

Biography: Imraan Faruque’s research interests include reduced-order models of complex systems, biologically inspired locomotion and control systems, unmanned aerial systems, and flight dynamics and control.  Dr. Faruque’s specialization is in dynamic models of flying insect feedback, and in reduced order flight dynamics models that can concisely capture the dynamic properties of insect flight control, where his work has led to over 40 publications, including numerous best paper awards and patents. Dr. Faruque is currently an Assistant Professor at Oklahoma State University’s Department of Mechanical and Aerospace Engineering, with an appointment as Assistant Research Professor in the University of Maryland’s Department of Aerospace Engineering.  He is an honors alumnus of Virginia Tech, and received his MS (2010) and Ph.D. in Aerospace Engineering in 2011 from the University of Maryland. He previously held research positions at the Army Research Lab, the Air Force Research Lab, and at General Electric Aircraft Engines.

Aerospace Engineering Student Featured in OU Crimson Spotlight

Sarah Ciccaglione, an aerospace engineering student, was featured in the “Crimson Spotlight” segment of the Inside OU newsletter on March 13, 2019. In the video, she speaks about her involvement at OU and how the School of Aerospace and Mechanical Engineering has made her feel at home.

Ciccaglione is a member of the Sooner Racing Team. She enjoys the mechanical systems behind the cars and competing with her team. Ciccaglione is interested in the technical side of aerospace engineering and she enjoys the math and science involved in her major. Furthering her career in the engineering field, she also got the opportunity to intern with Tesla in Palo Alto, California.

Ciccaglione is very involved on campus. She is a member of the rowing team and double majors in aerospace and vocal performance. Ciccaglione loves all of the opportunities that OU provides for its students and the support system she has gained.

Click here to watch the Crimson Spotlight video featuring Sarah Ciccaglione.

AME Staff featured on TECAID

AME was one of the selected schools to be featured on the TECAID website with WEPAN. This website focuses on transforming engineering culture to advance inclusion and diversity. TECAID is an active program in which engineers can learn about the environment they are in while learning about their skills and knowledge. They focus on how to create the best personalized experience for their engineers.

https://www.wepan.org/mpage/TECAID

We are now highlighted in multiple Webinars (2 and 3) along with a photo of the OU team. An interview was done with our director, Dr. Zahed Saddique. The interview can be found at this link: https://www.wepan.org/mpage/TECAID_MechEngDepts

We would like to thank Phil Dineen who served as TECAID’s web designer and ASME who provided funds to make these final updates possible.

Giving Day 2018

For 24 hours on Tuesday, the University of Oklahoma hosted Giving Day, a campus wide fundraiser to help our students and programs! Overall the University raised $477,764 through 2,123 gifts.

The engineering department raised $96,100 with 459 gifts and AME’s own ambassador, Rebeka Morales yielded the most gifts university-wide. AME had an encouraging message from Dr. Siddique to get the donations started and a donation center in the Hitachi Conference room where students could donate between classes.

AME would like to thank everyone who donated to support our amazing student teams! They have big goals and with your support that are even closer to reaching them.

Thank you to our challenge from Michelle Coppedge who matched $1000 after we raised $1000 and another $1000 after we obtained 30 total gifts.

Alumni Opportunity: Capstone Projects Needed!

casptone-projects-needed-ame

AME alumni:
Your school needs your help! The Mechanical Engineering Capstone program has grown in size tremendously in recent years, and we are in need of additional industry sponsored projects to support our large student cohort for Spring 2018.
 
For many years, our capstone program has collaborated with industry sponsors, like you, to provide “real-life” industry projects for our seniors to complete during their final semester in school. These projects allow our students to successfully demonstrate a variety of skills that future employers prize: analysis, design, teamwork and communication skills to name a few. Ideally, the project will feature some elements of a design process and be suited for a team of 3-5 members for a period of 15 weeks. We are also interested in interdisciplinary projects that may involve industrial or electrical engineers as well.
 
If you believe your company may be able to assist us, please contact Dr. Chris Dalton at cdalton@ou.edu.

2017 Student Research and Creativity Day Awards

Six AME graduate students participated in the 2017 Student Research and Creativity Day. There was a total of 65 entries in the event.  Join us in thanking the participants:

Jackson Autrey                             Siddique and Mistree

Shangyuan Jiang                          Gan

Anand Balu Nellippallil              Allen and Mistree

Mortaza Saeidijavash                  Garg

Xiwen Shang                                 Allen and Mistree

Ru Wang                                        Allen and Mistree

 

Congratulations to Mortaza Saeidijavash for placing second in the engineering category.

mortaza-saeidijavash-graduate-poster

Testing Aerospace Structures to the Breaking Point

Scalewings-P51-mustang-wing-test

Scalewings’ P51 mustang wing test

Dr. Hays’ Aerospace Structures class tested their UAV Wing Structural Design and Destruction projects on March 24, 2017 in the Rawls Engineering Practice Facility.

The task description was to design the structure of an assigned UAV wing outer mold line.  These wings were placed in a table testing mount and loaded with sandbags corresponding to the lift distribution across the wing.  While this is an older method of testing, it is still very much in use today and serves as a very definitive demonstration of strength. The objective was to construct a suitable wing structure to carry the defined load while keeping the overall structure as light as possible.

OK NSF EPSCoR Summer 2017 Award

AME student, Robert Anderson, was awarded the Oklahoma National Science Foundation (NSF) Established Program to Stimulate Competitive Research (EPSCoR) Summer 2017 Research Experiences for Undergraduates (REU) program. According to the EPSCoR website, “Award recipients, under the guidance of faculty mentors, will perform climate variability research at the University of Oklahoma in Norman and Oklahoma State University in Stillwater.”

The student researcher will be under the guidance of Dr. Andrea L’afflitto  to conduct research titled Summer Research Experience: Programming UAS for Improved Weather Forecasts.

For the full list of recipients, click here.

Lean Cell Advising at AME Spring 2017

ABOUT LEAN CELL ADVISING

Students must sign up for a 30-minute block using iAdvise to prevent long wait times. All advising sessions will be held in Rawl Engineering Practice Facility, Room 200. When students arrive, they should have completed all tasks under “Know Before You Go” below.

All students must attend Lean Cell Advising or students may not be able to enroll in courses until Fall 2017. 

LEAN CELL ADVISING + iADVISE

AME Students must sign up for advising with iAdvise. AME has designated a 30-minute block sign up for students. The appointment should only take approximately 10-15 minutes as long as student comes prepared. Please note, all students MUST SIGN-UP FOR A TIME WITH iADVISE IN ORDER TO BE ADVISED.

Follow the simple steps below to sign-up with iAdvise:

  1. Log in to http://iadvise.ou.edu using your 4×4 and password.
  2. Select the Department Level Advisement (AE or ME at the School of Aerosapce and Mechanical Engineering), then select Make Group Appointment. 
  3. Reserve an advising time slot (ex. 12:30 time is for 12:30-1:00pm time slot). You can only reserve one slot.
  4. Arrive at the beginning of your time slot. You will be seen sometime within that 30-minute time frame. The advising session should only take approximately 10-15 minutes if student comes prepared.
  5. If you do not reserve a time slot before attending Lean Cell Advising, you may not be seen if the time slot is full.
iAdvise
download icon iAdvise Step-by-Step
Download the iAdvise step-by-step PDF here:

ADVISING DATES

All AME Lean Cell Advising sessions will take place in the Rawl Engineering Practice Facility, Room 200.

  • Returning Seniors & National Merit Scholars: Tuesday, February 28th from 12:00-3:00pm
  • Sophomores & Pre-Med: Wednesday, March 1st from 1:00-4:00pm
  • Juniors: Thursday, March 2nd from 12:00-3:00PM
  • Freshmen: Monday, March 27th from 1:00-4:30PM

Unsure of your academic classification? Go to oZone > click the academic tab > click academic profile > select the current semester

KNOW BEFORE YOU GO

  • Prepare a course plan in Degree Navigator by logging on to ozone.ou.edu (The course plans on oZone do not check for pre-requisites nor will it verify courses offered during a specific semester)
  • Bring prepared course plan, degree check sheet and degree flowchart with the classes you have taken checked off, current courses circled and courses you plan to take in Fall 2017 highlighted
  • If you are not prepared upon arrival, your time will not be guranteed
  • A staff member from the Williams Student Services Center will be in attendance to remove your advising hold and answer any enrollment/graduation questions
  • A Pre-Med representative will be in attendance on Wednesday, March 1st

OTHER INFORMATION

Freshmen are required to be advised by their University College, Athletics, or Honors/Scholars Advisor in order to be able to enroll.

Do you have questions or concerns about advising, classes, your current major or school in general?

Please know that aside from Lean Cell Advising, you are encouraged to meet with your College Advisor in the Williams Student Services Center (WSSC) any time you have questions, or concerns you wish to discuss in a one-on-one meeting. Lean Cell Advising is an advising process intended to provide a stream-lined process for meeting with your major faculty advisor while also addressing the multiple steps in theadvising/enrollment system without having to visit multiple offices and staff. HOWEVER, you can, and are encouraged to, meet with your WSSC advisor if you require or would benefit from more in-depth guidance and academic counseling. It’s easy to do! Log into: iadvise.ou.edu to access available appointment times for your specific advisor. Don’t see any openings? Click here to contact your WSSC advisor or call WSSC directly at (405) 325-4096.

Do you have questions about career fairs, graduate school, internships and co-ops? 

WSSC advisors are here to assist you with Career Counseling. We encourage you to take advantage of this guidance as you prepare for your future as an engineer!

QUESTIONS?

For more information or accommodations on the basis of disability, please contact Kate O’Brien at kobrien@ou.edu.

Control of a Quadrotor Using Adaptive Control Project

A group of students from Dr. Andrea L’afflitto’s Flight Controls class created the following video:

According to Dr. L’afflitto, this project consisted of designing an autopilot for a quadrotor using some modern, very aggressive control techniques. The purpose of this video is to show the results achieved graphically, however, the mathematical models, the control design problem and the numerical simulations have very deep roots.

“I am extremely proud of their work because these are all undergraduate students, but the quality and the mathematical complexity is the one of a graduate project,” said Dr. L’afflitto. “We all can imagine the impact of the development of such technology, considering the growing attention that OU is putting on the UAS technology.”

Video Transcript:

This video shows the result of a students’’ project developed as part of the AME 4513/5513 “Flight Controls” course at the University of Oklahoma in Fall 2016. A DJI F450 will inspect some buildings of OU’s main campus. The drone’s autopilot implements an algorithm based on Model Reference Adaptive Control.

An important feature of this simulation is that the quadrotor dynamics is not captured by a set of nonlinear differential equations, but it is deduced from a SimMechanics model of a DJI F450. This guarantees high accuracy of the results presented.

The adaptive control technology allows precise, aggressive maneuvers in the vicinity of obstacles, such as buildings.

[VIDEO]

Next, we compare the performance of a quadrotor (in white) implementing an adaptive control law and a quadrotor (in black) implementing a classic PID controller.

[VIDEO]

Created by: Blake Anderson

Riley Cotter

Jordan Logue

Kevin Murray Jr.