Dr. Kazempoor Receives $1.8 M+ Grant for Natural Gas Project

 

In January, Dr. Pejman Kazempoor received a grant to start work on his natural gas project titled, “Low-Cost Retrofit Kit for Integral Reciprocating Compressors (IRCs) to Reduce Emissions and Enhance Efficiency.” This new retrofit technology—consisting of a combustion optimizer integrated sensors, and a cloud-connected control system—will significantly reduce emissions (i.e., methane and volatile organic compounds), improve operating efficiency, and reduce operating costs for existing IRCs used in production, gathering, transmission, and processing sections of the natural gas industry. This project received a DOE Funding of $1,488,391 plus $394,751 of Non-DOE Funding; and will be done over the course of 3 years.

Dr. Pejman Kazempoor, Dr. Hamid Shabgard, and Dr. Ramkumar Parthasarathy are the three professors involved in the project from the School of Aerospace and Mechanical Engineering. Dr. Sridhar Radhakrishnan, a professor from the School of Computer Science, is also involved in the project. Industry partners include WAGO Automation and Mid-Continent Rental.

According to Kazempoor and his research team, they, “expect to decrease emissions significantly from the production sector of the oil and gas industry.” The production sector accounts for 72% of the total methane emissions from the oil and natural gas industry (EPA, 2017).

Dr. Kazempoor will be collaborating with Dr. Radhakrishnan and WAGO automation to create a cloud-connected remote monitoring tool. Since the parameters to reduce emissions constitute true evidence of the IRC’s healthy operation, the cloud-connected feature facilitates remote monitoring of the IRC for preventative and predictive maintenance as an additional benefit to operators.

Dr. Kazempoor will be working on the project in his Energy Sustainability Center here at OU. He said, “The oil and natural gas industry has a direct economic impact on the state of Oklahoma. It’s a great opportunity to help our state and nation by solving the oil and natural gas industry problems, in this case, emissions.” Dr. Kazempoor said an aspect of this project he really enjoys is that they’re using advanced techniques, such as artificial intelligence, to modernize and enhance the safety and efficiency of the Nation’s natural gas infrastructure.

Three graduate students, who will use parts of the project work in their doctoral dissertations/master’s theses, will assist the principal investigators. “They are helping us to modernize what we have now in the field to the current standards. For example, a modern car has many sophisticated technologies. IRCs have been utilized in the oil and gas industry for 130 years, so they ‘re trying to integrate new technology into those old engines to make them more efficient.”

One graduate student will work on the Computational Fluid Dynamics, another on sensors, and the third graduate student will work on monitoring tools. Two undergraduate students will assist graduate students. Additionally, a technician will be hired to work on the retrofit kit manufacture and installation in the field.