Senior Pre-Capstone Teams Build Autonomous Robots

 

This year’s winning robot.

This year’s senior Pre-Capstone teams were tasked with going through an extensive design process to design, build, and test an autonomous robot that could navigate around a predetermined track. This process was designed to mimic a companies design process following the required paperwork, design decisions, CAD, FEA, and ultimately working prototype.

Teams came up with one-off solutions such as 3D printed parts, wireless controlled robots, mechanical steering mechanisms, and an array of custom electrical components. This exercise helped the mechanical engineers broaden their skills and ideas while teaching students how to work through a complicated design process. The winning team as pictured above used a custom cardboard chassis to save on weight and 3D printed guide rails to keep the robot from hanging up on the wall. The team used high torque servo motors as a drive mechanism to maximize the weight they could carry while still remaining relatively fast. The video below shows the second-place team’s mechanical approach that used Legos and motors to quickly move around the track while rubbing against the wall. This team focused on using a simple solution to accomplish the same goal and minimizing design time.

All of the teams did well implementing several different design philosophies to highlight the importance of diverse ideas in engineering.

Below are the robots from other teams.

 

 

Boomer Rocket Team and Sooner Off-Road Begin Their Thousands Strong Campaigns!

This month, Boomer Rocket Team and Sooner Off-Road kicked off their Thousands Strong Campaigns! These student teams want your support to help them get to competition.

Sooner Off-Road is a student team that designs, manufactures, and races an off-road vehicle for the Baja SAE competition. They are hoping to raise $7,000 before their Thousands Strong campaign ends on December 5, 2020, at 11:55 p.m. The money donated to them will go towards the construction of the vehicle, software used for design, and travel expenses. As of today, they have reached 53% of their goal, and they could use your help! Donate to Sooner Off-Road by visiting their Thousands Strong website: https://thousandsstrong.ou.edu/project/22820

Boomer Rocket Team is a group of multidisciplinary engineering students dedicated to the design, construction, and launch of high powered rockets. BRT hopes to raise $3,000 before their Thousands Strong campaign ends on December 11, 2020, at 11:55 p.m. The money they receive will be used to purchase materials and send students to the Argonia Cup in Kansas. So far, they have reached 54% of their goal, and they need your help! Visit BRT’s Thousands Strong website to donate: https://thousandsstrong.ou.edu/project/22934

Thank you for your support!

Research in Flexible Sensors

In Spring 2020, AME granted several Undergraduate Research Opportunity Awards (UROA) to faculty and undergraduate students. Dr. Yingtao Liu and his student, Vincent Webster, received one of these awards, which Phillips 66 sponsored.  Vincent is a senior in aerospace engineering.  About his research, Vincent writes:

My research consisted of developing flexible sensors used in several applications including human motion detection, sensor arrays, soft robotics, biomechanics, structural health monitoring, and prosthetic devices. These sensors measure the force applied to them using a technique called piezoresistivity. Piezoresistivity is characterized as the change in electrical resistance of the material due to an applied deformation. Highly flexible piezoresistive sensors typically decrease their electrical resistance during an applied load. The decrease in resistance occurs due to the variation of microstructures and properties of the materials under loads. To fabricate these sensors, flexible PDMS polymer, was used as the bulk material of the sensor. Carbon nanotubes were uniformly dispersed within the polymer to form the electrical conductive network microstructures. Sugar particles were then added during the fabrication process to create a mixture of carbon nanotube, PDMS, and sugar combination. The sample is then submerged in water to ideally release all the sugar from the sample. The traditional sugar removal method using water can take days to completely remove all the sugar particles. To reduce this extraction time, we would submerge the samples in water and microwave them. This would rapidly increase the temperature of the samples within a minute and the samples would expand and allow water to saturate the sample, leading to the rapid removal of all sugar particles and forming desired open-cell microstructures.

This research built a solid foundation for the rapid manufacturing of piezoresistive polymer foams for broad sensing applications. Our preliminary results have demonstrated that the developed method is able to effectively control materials’ microstructures, enhance carbon nanotube dispersions, and optimize their sensing function. Collaborating with Dr. Liu’s graduate student, Blake Herren, has motivated me to pursue graduate study at OU. Many thanks to the generous support of AME and Phillips 66.

Great job, Vincent!

Research in Ultra-High Thermal Conductivity

Dr. Jivtesh Garg and his graduate students are exploring a new class of ultra-hard boron-carbide materials such as BC2N and BC5 for ultra-high thermal conductivity values. Their goal is to achieve thermal conductivity values higher than diamond and graphene (> 5000 W/mK).

They are using quantum-mechanical calculations based on density-functional theory to predict thermal transport properties. Simultaneously the group is using laser-based frequency-domain thermoreflectance measurements (FDTR) to experimentally measure these high thermal conductivity values. Ph.D. students Rajmohan Muthaiah, Avinash Nayal, and Roshan Annam are conducting this research.

The group has also developed advanced functionalization schemes to more efficiently couple graphene with polymers for thermal transport applications. Graphene is a wonder material with extraordinary thermal, mechanical, and electrical properties. By efficiently coupling graphene with polymer, a large enhancement in properties can be achieved. Initial experimental results suggest dramatic improvement in the thermal conductivity of polymers such as polyetherimide. Developed functionalization schemes are being applied to a wide range of polymers. Ph.D. students Fatema Tarannum and Swapneel Danayat are involved in this research.

They are further exploring non-equilibrium phonon effects for the design of high-efficiency hot carrier solar cells and thermoelectric materials. Electrons in solar cells thermalize through interactions with lattice vibrations (phonons). By engineering non-equilibrium phonon effects to generate hot phonons, the thermalization of electrons can be inhibited, thereby enhancing solar cell efficiency. Non-equilibrium phonon effects also enhance the efficiency of thermoelectrics by mitigating heat loss through lattice vibrations.  Fundamental first-principles techniques coupled with Monte-Carlo simulations are being used to study non-equilibrium phonon effects.

Through advanced simulations and state-of-the-art experimental measurements, the group aims to develop the next generation of advanced composite materials for thermal management and energy conversion applications and is a world leader in thermal management technologies.

 

Using EEG to Understand Engineering Creativity

Tess Hartog, Md Tanvir Ahad, and Amin Alhashim are working together to explore the uses of electroencephalogram (EEG) to understand neuro-responses as they pertain to creativity in engineering. They are working under Dr. Zahed Siddique; Tess Hartog is an ME MS student with a background in math and psychology, Tanvir is an ME Ph.D. student with a background in EE, and Amin is an ISE Ph.D. student. Megan Marshall was a former fellow who graduated with her MS in AE in the summer of 2020.

The main objective of the research is to study creativity in engineering by gaining a deep understanding of how creative thoughts form and how the brain responds to different levels of creative products.  The students are currently utilizing EEG to capture the neurological behaviors and responses when conducting research.

Graduate Students

Amin’s work focuses on three areas: creativity definitions, creativity models, and the effect of cues on creativity.  Through text analysis techniques, Amin is analyzing a corpus of creativity definitions extracted from literature to understand how creativity is being perceived by engineers and non-engineers.  There are many models for creativity and Amin is working on a classification scheme based on their similarity.  Such classification is important for the advancement of creativity research as evident in the history of sciences. Amin’s last area of focus is on the effect of cues on creative behavior and its relationship with how the brain behaves through the use of EEG.

 

Tess’s work focuses on a subset of EEG recording called event-related potentials (ERPs), which are time-locked neural responses to stimuli. Specifically, she investigates the ERPs (the N400response) of engineers to creative stimuli. Tess is also working on analyzing the EEG recordings of engineers during engineering design-related problems and examining whether exposure to creative stimuli will improve designs. Below are some of her preliminary ERP findings. As indicated in the pictures, she looks for differences in negative wave amplitudes for three types of stimuli around 400 milliseconds post-stimulus presentation (i.e. the N400).

 

Defining creativity is hard but the measurement of creativity is even harder. To capture the multifaceted nature of creativity; more than a hundred measurement techniques have been developed and applied including neurocognitive approaches. The brain’s neural dynamics related to creativity should be accounted to quantify the relationship between the brain regions. During divergent thinking, EEG studies aid temporal dynamics of the neuronal activations underlying cognitive insight. In order to solve real-world problems, creativity is a must for engineers. Engineers’ involvement with creative tasks; activate brain regions corresponding to the task’s demand. Identifying the significant brain temporal regions engaged with the creative tasks for engineers is a crucial question. Brain-computer interfaces (BCIs) which are based on event-related potentials (ERPs) have the potential ability to estimate a user’s task involvement. Therefore, the question comes: Is the creativity (neural activity) of engineers detected by ERP-Based Brain-Computer Interfaces task-specific? Tanvir’s research work focuses on addressing these questions in the Neurocognitive creativity research domain.

Oklahoma Aerospace Engineering Students Kickoff Design Project to Support International Space Station Resupply Missions

OU students travelled to Louisville, Colorado to meet with engineers at Sierra Nevada Corporation (SNC), and kickoff their capstone project work of designing ground support equipment for SNC’s Dream Chaser International Space Station resupply mission. Sierra Nevada Corporation is under contract with NASA to supply and recover payloads from the space station in support of NASA’s science and human spaceflight missions. Seven OU students from the Gallogly College of Engineering will spend their spring semester designing hardware to encapsulate and protect the Shooting Star cargo module of the Dream Chaser as it is prepared for flight.

Pictured from left to right: Chris Raatz (SNC), Brayden Cole, Alix Caudill, Sebastian Medina, Chandler Ziegler, Blake Mattioda, Patrick Turner, Abdelwahab Makhlouf, and Maggie Mueller (SNC)

This press release was written by Dr. Thomas Hays.

Dr. Song collaborates with OG&E to bring you smarter HVAC systems

The following article was released by OG&E in a recent newsletter. Are you smarter than your HVAC? In the near future, it may be a toss-up

If University of Oklahoma College of Engineering professor Li Song and OG&E Supervisor of Customer Support Jessica King have their way, your HVAC system soon will be smarter than you are – at least when it comes to energy management.

Song, an associate professor in the School of Aerospace and Mechanical Engineering, and her colleague Choon Yik Tang, with the School of Electrical and Computer Engineering, have been working for the last five years to create a “smart” heating and cooling system that helps customers be more informed about their energy consumption and ultimately their energy bill.

Much of the success they’ve had so far is due to the partnership between OU and OG&E – and the relationship the two women have formed during the project.

Song’s original intention was to design for large, commercial buildings and reached out to Pat Saxton, Expert Account Manager for OG&E, who was working with Tinker Air Force Base. Song discovered the model for commercial buildings was “too cumbersome” to test outside of the lab and decided to use it for homeowners instead.

“Pat introduced me to Jessica, who gave me a perspective on what OG&E was doing with its SmartHours program and the company’s interest in helping make customers smarter energy consumers,” Song said.

Song is also working with Ecobee to put the smart HVAC technology in their thermostats. OG&E also is working with Ecobee to pilot their thermostats in 700 test homes, using the existing thermostat technology.

The new technology goes beyond the typical SmartTemp thermostats currently used in the SmartHours program in that it learns factors, such as humidity and air flow, within the home, customer energy consumption preferences and the performance of the HVAC system. It also takes into account outside factors such as temperature, wind speed, sunlight, weather forecasting and the cost of electricity during certain times of the day.

The technology also provides ahead-of-time forecasting so that customers know what their costs will be if they adjust their thermostat up or down.

Customers can control and monitor their thermostats using a smart phone app.

“We envision that customers in the future will receive personalized information about their home, their energy costs and their own energy consumption and will know it ahead of time or in real time,” King said. “In other words, they won’t be left in the dark about what their end bill will be.”

King assisted Song by writing letters in support of the project that were included in the application to get funding from the Department of Energy.

“After the success of SmartHours, we were asking ourselves ‘what’s next?’” King said. “And here was this great opportunity to support our local university and further our vision of being a trusted energy advisor for our customers.”

Song and her research team are now undertaking a two-year program to test the technology in an unoccupied home on the OU campus.

“We want complete control in these initial tests but will simulate the moisture, heat and other factors created by residents.”

In the third year, OG&E will recruit about 10 customers to participate as occupied test homes and, following this pilot, will expand the program to more homes.

Both women’s eyes light up when they talk about the technology and what it can do for OG&E customers.

“We envision expanding the technology to eventually all smart thermostats to give people more knowledge about how they use energy, what it costs and how small changes can impact their end bill,” Song said. “As well as helping predict the bill, the system will improve HVAC operations, detect AC problems earlier and possibly have an environmental impact as well.”

“The possibilities are endless,” King added. “We could work with home builders to create a true Positive Energy Home, and we’ve already formed a partnership with Ideal Homes to explore this possibility. Plus the data we get from the thermostats could help us target customers for energy efficiency programs, helping us provide energy assistance to those who need it most.”

Giving Day Results are in!

AME raised $10,809 on OU Giving Day, which took place on September 10, 2019. All donations went towards the Gollahalli Legacy Fund benefiting instructional labs.

Instructional labs will use this money to improve and modernize their technology and provide better hands-on experience to undergraduate students. Special thanks to AME board member David Raney for issuing our 2019 AME Donor Challenge. He unlocked $1,000 once AME raised $2,000.

Congratulations to Sooner Off-Road who took 3rd place in the College Competition Team fundraising challenge by raising $1,355 for their team!

Thank you to everyone who chose to donate to our school!

AME Graduates Featured in The OU Daily for Their New App

Sam Jett (pictured), a mechanical engineering graduate, Zach Schuermann, a mechanical engineering and computer engineering graduate, and Joseph Lovoi, a finance, entrepreneurship and venture management graduate, were featured in the OU Daily for their new app. The app is called STEV (Student-Teacher Evaluation Visualizations), and it’s a new way for students to evaluate their teachers.

Click here to read the full article on the OU Daily Website.

Dr. Hays and Students Place First in the American Radio Relay League RTTY Rookie Roundup

Aerospace engineering sophomore Jarrod Manning, data science masters student Jorge Garcia, and Dr. Hays placed first in ARRL’s (American Radio Relay League) RTTY rookie roundup competition on August 18th.

The students used the national weather center’s tri-band yagi antenna to make 50 contacts using RTTY (Baudot FSK digital mode). Contacts came from widely varying distances as close as Norman, and as far abroad as Belgium. The competition encourages new amateur radio operators that have earned their license within the previous three years to engage in antenna, propagation, and digital mode studies. ARRL is the primary amateur radio organization in the United States and sponsors many similar competitions throughout the year.