Highlighting Dr. Miller and Dr. Fagg’s Research Project: Progressive Locomotor Learning in Infants at Risk for Cerebral Palsy

Dr. David Miller and Dr. Andrew Fagg are working with researchers and children all over the country to develop a device called the Self-Initiated Prone Progression Crawler (SIPPC) that they hope will be a new treatment for cerebral palsy. The project is called, “Progressive Locomotor Learning in Infants at Risk for Cerebral Palsy.”

Pictured is a child on the SIPPC 3 developed during a NSF NRI grant in 2015. The PIs were: Andy Fagg, David Miller, Lei Ding, and Thubi Kolobe. The grad students from AME that worked on this were Michael Nash and Mustafa Ghazi, both of whom have since graduated (Ph.D. in 2018). Currently, Mustafa Ghazi, as a PostDoc is working on the current version of the SIPPC for the most recent grant. Photo by Hugh Scott.

The research project was given its first grant in 2013, and the researchers (including undergraduate, graduate, and Postdoc students) were ready to create the SIPPC. According to Dr. Miller, “people are at risk for cerebral palsy, but there isn’t a diagnosis that’s done in the age group [they’re] dealing with.” There are, “children at risk for cerebral palsy because they’ve had some sort of trauma either during the birth process or while in the womb.” It’s usually that they’re not moving normally. So, to test the children’s mobility, they evaluate two different groups on the SIPPC. One group has a set of infants that are developing typically, and the other group has infants at risk for cerebral palsy.

Researchers are working on different aspects of this project from coast to coast. In Philadelphia, they bring in and work with all participating patients. In California, they are developing a set of sensors that are protocol for random leg movements in the first few months of child development. Here at OU, they’re developing and testing the SIPPC, “and the plan is to send that off to Philadelphia.”

Pictured is a child on the SIPPC 3 developed during a NSF NRI grant in 2015. The PIs were: Andy Fagg, David Miller, Lei Ding, and Thubi Kolobe. The grad students from AME that worked on this were Michael Nash and Mustafa Ghazi, both of whom have since graduated (Ph.D. in 2018). Currently, Mustafa Ghazi, as a PostDoc is working on the current version of the SIPPC for the most recent grant. Photo by Hugh Scott.

The SIPPC has gone through several revisions. Currently, the group is on its fourth version of the motorized skateboard called SIPPC-4. It’s a motorized skateboard the kids can lie down on, but it measures all the forces of the infants. It has a force-torque sensor, wheel encoders, a few computers, and some cameras onboard. The information automatically goes to a person’s phone or iPad. It also gives an interface to a therapist, so they can control it by getting it out of corners or stopping it if the kid is crying.

“The standard mode is where the kid actually touches the ground and tries to crawl as the device amplifies and quantizes the child’s movements.” So even if they’re a little weak, they get the idea of exploring and having self-determination. There is also an automated learning component.  “Even if the child does not touch the ground, but they make the motions as if they are crawling,” the device will work with them. The kids wear a suit that contains several position sensors so the robot can measure the arm and leg positions and movements on the SIPPC.” This way the automated system can coordinate the robot’s movements with the child’s actions.

Dr. Miller said he’s, “hopeful that this research will, probably in the long term, provide some benefit to these subjects or others with a similar condition.”

OU Researcher Uses Geometry for Affairs of the Heart

Newswise — NORMAN – Geometry is often referenced for matters of the heart. Marriage has been described as “two parallel lines,” and others have compared love to an “irrational equation” or as unending as “pi.” But when it comes to the medical matters of the heart, geometry can be a lonely and dangerous affair.

“The shape and size of a heart is not the same for every person, and a diseased heart, such as ischemia heart failure, is different than a healthy heart,” explains Dr. Chung-Hao Lee, an assistant professor in the Biomechanics and Biomaterials Design Laboratory in the University of Oklahoma’s School of Aerospace and Mechanical Engineering. “So, when it is necessary to do surgery on the heart, it important to map out the individual’s particular geometry to know how it will respond to different surgical treatment options.”

Lee’s recent research is focused on a predictive surgery for a serious heart condition called Functional Tricuspid Regurgitation, which affects approximately 1.6 million Americans. FTR is typically caused when the left side of the heart fails, causing the right side to expand and a geometric distortion of the heart. The distortion can lead to reverse blood flow, poor functioning of the heart valves, or worse, heart failure on the right side.

Long-term surgical outcomes to repair FTR have a 20 percent moderate to severe recurrence rate by 10 years after initial surgery. Also, up to 40 percent of patients who have cardiac surgery require additional surgery within five years due to the individual’s heart characteristics. This results in more open-heart repeat surgeries and significant increases in risk and mortality.

Lee and his team are developing a predictive modeling tool for individual-optimized heart valve surgical repair. The customized analysis will be a surgical planning tool for the treatment of that patient. Lee’s team uses a combination of clinical image data, such as functional magnetic resonance imaging and clinical computed tomography, to reconstruct a 3D computational model of the heart. Lee’s model would guide surgeons on the best approach to repair FTR in a particular patient, reducing the risk of reoccurrence.

“Often, surgeons may have several options on how to repair a heart,” Lee said. “They may try to manipulate the geometry of the heart or valves or change the size of each individual apparatus. We can simulate those surgical scenarios, one by one, to know the individual-optimized therapeutic option.” The right approach can improve the durability of the repair.

“We are now entering a level of knowledge and technical capability where computational modeling can deliver precision medicine,” Lee said. “If we can predict how a distinct heart will function under different surgical scenarios, we can help surgeon select the best approach to the surgery.”

 

The intersection of science, computational science, clinical research and the heart make a healthy affair.

###

 

The Gallogly College of Engineering at the University of Oklahoma challenges students to solve the world’s toughest problems through a powerful combination of education, entrepreneurship, research, community service and student competitions. Research is focused on both basic and applied topics of societal significance, including biomedical engineering, energy, engineering education, civil infrastructure, nanotechnology and weather technology.

The programs within the college’s eight areas of study are consistently ranked in the top third of engineering programs in the United States. The college faculty has achieved research expenditures of more than $22 million and created 12 start-up companies.


Source: https://www.newswise.com/articles/ou-researchers-uses-geometry-for-affairs-of-the-heart