Wind Powered Robots – AME Pre-Capstone Project

The Mechanical Engineering Pre-Capstone project revolves around a central semester-long, team-based project. This project is designed to provide students with the opportunity to act as junior engineers exploring solutions to a complex, multi-level, and competency-building problem. This experiential learning provides the basis on which competencies will be further developed for students entering their Capstone project.

This year’s task is to design, build and test a system capable of converting wind energy into some more useful form of energy and then store this energy in some compact, transportable module. The wind source will be represented by a household electric fan, and the energy modules must be used to propel a vehicle, carrying large payload around a track.

Students are actively at work this semester and eager to complete the task at hand!

Mechanical Engineer senior, Adam Kordsiemon, gives us an insight to his groups journey at tackling this year’s Pre-Capstone project.

Boomer Rocket Team (BRT) and Design Build Fly (DBF) go head-to-head for Thousands Strong Campaigns

Boomer Rocket Team (BRT) and the Design Build Fly Team (DBF) are going head-to-head in launching our Thousands Strong Campaigns. Thousands strong is OU’s own fundraiser program where alumnae and OU supporters can directly help OU programs. Both campaigns go live on Monday, November 19, 2018! Both teams have a goal to raise $5000 and need  support to get them to competition.  This year, to make things interesting, both teams are racing to see who can raise the most in 30 days!  Check out the Thousands Strong Pages and please consider donating or sharing either campaign with your family, friends, and colleagues! 

The Boomer Rocket Team is a student-run team at the University of Oklahoma. BRT has been an amazing avenue to teach students about rocketry and space through research, competition and in a capstone class for senior aerospace engineers.  In May 2019, the team will be heading to Kansas to compete in the Argonia Cup, previously won by OSU for two years running. This year, We are bringing our A-game to take the Cup, but we can only do this with your support! To learn more and to contribute to the BRT campaign, check out the Boomer Rocket Team campaign page: http://bit.ly/2K7wAwq

The Design Build Fly Team has been a cornerstone of the aerospace engineering program at OU for over 20 years. DBF provides opportunities for students to explore different aspects of aeronautical engineering, from their underclassmen years through to Capstone for seniors. In April 2019, the team will be heading to Tucson, AZ to compete in the AIAA international DBF Competition. With two top-ten finishes in the past three years, we are hoping to secure OU’s first podium finish. We will make sure we design a winning airplane, we need your help to get it to competition.  To learn more and to contribute to the DBF campaign, check out the Design Build Fly campaign page:  https://thousandsstrong.ou.edu/project/12284

AME student Rosa Lopez was awarded 1st place for Poster Presentation

AME Senior Rosa Lopez was awarded 1st place for a non-life science poster presentation at the 24th LSAMP Research Symposium at Oklahoma State University in Stillwater,OK. on Novemeber 3rd. Rosa has been working with assistant professor Yingtao Lui since spring 2017 and has received multiple undergraduate research awards, including the LSAMP award and Undergraduate Research Opportunity Program (UROP) award.

Rosa’s research focuses on the development development of self-deployable shape memory epoxy and composites for the design of next generation solar sail structures. She has developed novel flexible composites using shape memory epoxy and structural fiber fabrics. The shape memory composites can fully recover from highly bent and twisted shape back to their original shape within a minute and are controlled by electrical resistance heating methods.

Congratulations Rosa!

Students have been selected to receive GCoE Dissertation Excellence Award

Six students have been selected to receive a Gallogly College of Engineering Dissertation Excellence Award for $5,000. Jelena Milisavljevic and Anand Balu Nellippallil advised by Farrokh Mistree and Janet Allen, Madhumitha Ramachandran advised by Zahed Siddique, and Mehrad Amirkhosravi and Maya Pishvar advised by Cengiz Altan.

Mehrad Amirkhosravi is currently a Ph.D. candidate at AME working as a research assistant in the Composite Manufacturing Labratory under Dr. Cengiz Altan. He is on track to compete his doctoral studies by Spring of 2019 and is very thankful for this award.

“I believe this generous support will provide a better atmosphere for me and reduce my financial concerns, thus helping me to focus on my research and career goals in the last year of my Ph.D.” – Amirkhosravi

 

 

 

 

 

Another one of Altan’s students, Maya Pishvar is also working on her Ph.D. candidacy in Mechanical Engineering with an interest in processing science of polymeric composites. This scholarship is helping her achieve her educational goals by allowing her to alleviate financial stress and spend more time finishing her dissertation.

“In addition, receiving this award increased my feeling of accountability towards completing my degree.” -Pishvar

 

 

 

 

 

 

 

 

Ph.D. Student Madhumitha Ramachandran’s dissertation focuses on the developement of data-driven approaches for condition monitoring, real-time prognostics and fault detection of dynamic seals in oil and gas applications.

“This award will supplement my research stipend and provide flexibility build broader theoretical perspectives to address challenges in oil and gas industry with respect to dynamic seals. Also, it has lightened my financial stress which would allow me to focus more on publishing my scholarly work in peer-reviewed journals.” – Madhumitha

AME Staff featured on TECAID

AME was one of the selected schools to be featured on the TECAID Webiste with WEPAN. This website focuses on transforming engineering culture to advance inclusion and diversity. TECAID is an active program in which engineers can learn about the environment they are in, while learning about their skills and knowledge. They focus on how to create the best personalized experience for their engineers.

https://www.wepan.org/mpage/TECAID

We are now highlighted in multiple Webinars (2 and 3) along with a photo of the OU team. An interview was done with our director, Dr. Zahed Saddique. The interview can be found at this link: https://www.wepan.org/mpage/TECAID_MechEngDepts

We would like thank Phil Dineen who served as TECAID’s web designer and ASME who provided funds to make these final updates possible.

Russell W. Mailen Ph.D. presents over Thermo-Mechanical Behavior of Light Stimulated Shape Memory Polymer Sheets

This past Friday, AME had the honor of observing a presentation from Auburn professor Russell W. Mailen Ph.D. Mailen is an Assistant Professor in the Department of Aerospace engineering at Auburn University. His research focuses on the time-dependent properties of polymers, polymer composites, and computational modeling of shape memory polymers.

His presentation was over Thermo-Mechanical Behavior of Light Stimulated Shape Memory Polymer Sheets. In general, he is researching self-folding systems that use heat to cause motion. His research objectives include:

  • Formulating and implementing a coupled thermo-mechanical model into a 3D nonlinear finite element framework
  • Model material recovery in response to heat. (Validate model through uniform shrinkage and Demonstrate hinged folding which is critical for self-folding origami)

 

  • Generalize model for different coupled thermal and mechanical loading conditions to obtain optimized origami structures (Optimize structures by control of thermos-mechanical response to external stimuli)

 

Thanks to Professor Yingtao Liu who reached out to Mailen to come to OU and thanks to him for an interesting and dynamic presentation!

If you are interested in more information on his research, here is his abstract:

Shape memory polymers (SMPs) represent a class of active materials that can change shape in response to external stimuli such as heat, light, and solvents. Although SMPs have many applications, we are primarily interested in using the material as environmentally responsive actuators for self-folding origami structures. Previously, we developed a method to activate SMPs using light. Ink patterned on the polymer surface absorbs thermal energy from an infrared (IR) light which results in localized heating and shrinking of the sheet. The shrinking behavior can be harnessed to produce folded and curved structures. We investigate the thermo-mechanical response of this system by developing a three-dimensional (3D), non-linear finite element model. This model accounts for external heat sources, such as the IR light, as well as internal heat generation caused by dissipation of viscous energy. The model shows how the coupled thermo-mechanical loading conditions affect folding and unfolding of SMP sheets in response to localized heating in ink patterned regions. We conduct a parametric study of sheet thickness, hinge width, degree of pre-strain, and hinge surface temperature, and we demonstrate methods for generating 3D, curved structures. Self-folding can be used to obtain 3D structures from planar sheets for an array of applications, including medical stents, antennas, and engineered, origami applications, such as space telescopes.

Dr. Chung-Hao Lee and Dr. Yingtao Liu receive $45,000 award from Center for the Advancement of Science and Technology

Dr. Chung-Hao Lee and Dr. Yingtao Liu have received an award from the Center for the Advancement of Science and Technology. It is a $45,000 award from the State of Oklahoma for the research project titled “(HR) Novel Shape Memory Polymer Devices for Optimal Endovascular Embolization of Intracranial Aneurysms.”

The collaborative team for this interdisciplinary research has been established among bioengineer Dr. Chung-Hao Lee, material scientist Dr. Yingtao Liu, and neurosurgeon Dr. Bradley Bohnstedt (OUHSC), as well as student researchers in various engineering disciplines of the Gallogly College of Engineering. This project is currently supported by the 2017 Gallogly SEED Funding for Interdisciplinary Research, Faculty Investment Program (FIP) sponsored by the Office of the Vice President for Research, and the Pilot Research Program from the Oklahoma Shared Clinical and Translational Resources (OSCTR).

The project is the development of a novel medical device for surgical treatment of intracranial aneurysms. Incidental rupture of an intracranial aneurysm results in subarachnoid hemorrhage (SAH), which causes about 10% of an individual’s death before reaching medical attention. The overall objective of this research project is to identify objective hemodynamic and biomechanical criteria derived from predictive computer simulations for designing embolic devices and to develop the prototypes of embolic devices using aliphatic urethane shape memory polymers (SMPs), which possess excellent shape memory property, as a novel therapeutic technique for patient-specific endovascular embolization of intracranial aneurysms. The developed SMP foam-based embolic devices are expected to achieve short preparation time, optimal complete occlusion, and a significantly reduced rate of aneurysm recurrence. The development of such innovative technologies is expected to be beneficial to the healthcare of Americans with a stroke history and will dramatically reduce the corresponding in-hospital expenditure.

Tips and Tricks for the Engineering Career Fair from David Bert

Tuesday September 11th, we had the honor of listening to David Bert give Career Fair and Resume advise for this week’s career fair. The Engineering Career Fair is Thursday September 13th from 12:30-4:30 at Lloyd Nobel Center.  David Bert is the Vice President of Drilling at Chesapeake Energy Corporation and had a lot of real world advise to give to our students.

Career Fair Advise:

  • Victim vs. Leader – Make yourself a Leader while pursuing a career. Execute your goals rather than procrastinate, concentrate rather than being distracted, and embrace change instead of resisting it.
  • Utilize OU Career services help – Use HireSooner and Handshake to apply for jobs and internships.
  • Before the career fair make sure to do your research – Know about the companies you are interested in. (Their current research, jobs available, dress code they expect)
  • Have a goal! – Know your own career interests and be confident as you talk to employers.
  • Keep in mind that you are competing with students from other universities. It takes a lot of effort so do not be discouraged and keep looking.
  • Internships are key!!! – Internships are a pipeline to a permanent job. Most companies like to hire students who they have already had as an intern.
  • Use unconventional job search engines – apply online, subscribe to industry publications, work with AME and see how they can help you.
  • Ask smart questions while showing passion and interest in their company.

Resume Advise:

  • Ultimate goal: Get an Interview! You want your employer to look at it for 8 seconds to get a good idea of what you have to bring to the table.
  • Always include an objective or position if possible
  • Include accomplishments, not just responsibilities – What differentiates you?
  • Be prepaid to explain your summer activities and what you did.
  • Maximize related skills with a combination of your GPA and classes.

AME wishes everyone luck for the Career Fair! Y’all will do great!!!!

Ph.D. candidate Lin Guo recognized for a Paper of Distinction

At the ASME’s 2018 IDETC, Design Automation Conference, Lin Guo’s paper was recognized as a Paper of Distinction. This paper is one of 20 invited papers to appear in a special issue of the ASME Journal of Mechanical Design. Thomas Neeson and Hamed Zamanisabzi from the School of Geography, also contributed to this paper.

Lin Guo studies Industrial and Systems Engineering and is a Ph.D. candidate, starting her third year. The title of her paper is “Managing Conflicting Water Resource Goals and Uncertainties in a Dam Network by Exploring the Solution Space.” ASME Design Automation Conference, Quebec City, Canada.  Paper Number:  DETC2018-86018, L. Guo, H. Zamanisabzi, T. Neeson, J. Allen and F. Mistree , 2018.

Guo began with research of dams and reservoirs and asked the question “do they meet our expectations?”. After further research learning of the damage, death, and costly hazards faulty dam and reservoir networks can cause, she worked towards a solution of how to improve the conditions.

The most difficult part of her research was using industrial-engineering knowledge to improve a social-ecological system. This required expertise in both industrial engineering and geography so that she could give added-value in both domains. Guo had to create value to multiple groups in a way that everyone understands. She said that this challenge was also her favorite part of the process. With her coauthors from the Department of Geography and Environmental Sustainability, she was provided valuable knowledge to keep her work on track. She wants to thank OU for giving her tons of opportunities searching for collaborations and the chance to find a multi-disciplinary project.

Guo is a member of SRL at OU and has used her opportunities and advisors to further her knowledge through laboratory work, academic research, and writing. She enjoys the multi-disciplinary and multi-cultural working environment, having the chance to collaborate with scholars and experts in design, manufacturing, data science in universities or industry in different countries.

If you are interested in learning more about Lin Guo’s research, here is the abstract:

“In a multi-reservoir system, ensuring adequate water availability across reservoirs while managing conflicting goals is critical to making the social-ecological system sustainable in the presence of considerable uncertainty. The priorities of multiple user-groups and availability of the water resource may vary with time, weather and other factors. Uncertainties such as variations in precipitation bring more complexity, which intensifies the discrepancies between water supply and water demand for each user-group. To reduce such discrepancies, we seek to satisfice conflicting goals, considering typical uncertainties.
We observe that models are incomplete and inaccurate, which calls into question using a single point solution and suggests the need for solutions which are robust to uncertainties. So, we explore satisficing solutions that are relatively insensitive to uncertainties, by incorporating different design preferences, identifying sensitive segments and improving the design accordingly. In this article we present an example of the exploration of the solution space to enhance sustainability in multi-disciplinary systems, when goals conflict, preferences are evolving, and uncertainties add complexity.”

 

 

University of Oklahoma launches three rockets in Kansas

This past labor day weekend, the University of Oklahoma launched three rockets at the Kansas Kloudbusters’ Airfest event. A student research team lead by Dr. Thomas Hays performed the launches.

The research role is to fly a variety of material testing payloads under real flight conditions for the customer.   The top segment of the rocket is a general purpose volume that can be easily changed to fit their devices.  In addition to our UGRA students, Dr. Hays brought along Boomer Rocket Team leadership and some AE capstone leaders to make the best use of this opportunity to spread knowledge.

Dr. Hays commented that he is “happy to say our students represented the university very well in all aspects during the weekend!  The general manager of Aerotech rocket motors came running and tripping across the field to congratulate us on the rocket structure holding together under the thrust of his M6000 motor.” OU’s research team is the first civilian group to launch successfully on that design.

The AME department would like to thank the donor who provided the REPF truck that made the event possible.

Dr. Hays’ research team will be having a meeting in the next two weeks to set out their future goals and funding!