AME Alumni Highlights: Dr. Ozgur Pulat and Victor Tran

AME is delighted to have such talented Alumni who continue to make us proud after graduation. This month, we’re highlighting Dr. Ozgur Pulat, who graduated with his Ph.D. from OU in 2007, and Victor Tran, who received his undergraduate and graduate degree from OU.

Ozgur Pulat, PhD

Current Position:  Engineering Manager, Projects
Business Line:  Subsea Production Systems
Group:  Control Systems
Company:  Schlumberger
Location:  Celle, Germany

I manage a team of Lead Engineers who deliver subsea production control systems to oil companies like BP, Chevron, Total, etc.  My career began in February of 2007 after I graduated from OU with my Ph.D.  I started as a design engineer in new product development, then led an emerging technology project to develop a production reservoir power generation device for completion systems.  I earned two US patents from this work and moved on to become a team leader, then a project manager, and now an engineering manager.  During my career, I have always emphasized proficiency in both technical skills and maintaining strong people skills.  I believe this is what has allowed me to grow in my career and find success in the various positions I have held. During my undergraduate years at OU, I became very fond of learning and research.  I spent 2 years as an undergraduate research assistant for Dr. Sutton working on the OU supergas product researching alternative fuels.  My love for Fluid Mechanics was found during my first course with Dr. Parthasarathy and grew into my research focus for my Ph.D.  Along the way, I made many friends with whom I still speak today.  I was also involved in the Engineering Club and the Formula Team.

During graduate school, I graciously accepted a GAANN fellowship working on research topics in the area of energy.  My fellowship led me to teach multiple courses like Engineering Dynamics, Fluid Thermal Lab, Fluid Mechanics Lab, and Solid Mechanics Lab.  I believe this is where my passion for teaching and leading first began.  This experience gave me the confidence to know that I could lead and teach people.  This confidence has brought me to where I am today.

One of my favorite memories as an OU student was attending the football games and the Engineers weeks that we used to celebrate.  All the fun culminated in the “Fluid Mechanics Lab” where we would celebrate with our fellow students and teachers.  It really was a great experience.

My graduate degree has really helped me in my career progression.  Working on a graduate research topic required me to learn how to take a complex problem, break it down into smaller problems, and educate myself on the topic.  Additionally, it taught me how to regularly communicate progress to my stakeholders, and communicate confidence in my progress and results.  All of these key lessons have served me very well in my career where I am constantly challenged with new topics that I may not know anything about technology.  Additionally, my graduate degree has given me a profile within my company where people know that I have these skills as I have been able to conduct independent research during my graduate education.  This gives people the confidence in knowing I have the right profile to be trusted with complex problems that are of high priority to my organization.

Victor Tran
Current Position: ISS Flight Controller

Undergraduate and Graduate Experience: BS and MS in Aerospace Engineering.

I started out as an engineer in Flight Test for Boeing. After a couple of years, I transitioned to my current job here at NASA at the Johnson Space Center, where I’ve been for the last six years. In my current role, I support real-time operations in the Mission Control Center (MCC) and mission planning for the International Space Station (ISS) program.

There are a lot of people that can be an expert in something, but not many can clearly and efficiently communicate their thoughts and ideas. My experiences in obtaining my master’s degree allowed me to further develop my critical thinking and communication skills. This has helped me throughout my career, as I’ve built upon these skills, to ensure mission success for any projects I’ve worked on or lead. This has provided me with more opportunities for growth professionally and personally.

One of my favorite memories at OU is getting Sam Bradford’s autograph my freshman year in the South Oval.

Learning doesn’t end when you are done with school. Always be driven to continue to learn and apply that knowledge to the improvement of your team and yourself. And no matter what task you’re given, give it your best effort and be open to feedback.

Dr. Bin Xu Gives Seminar Over Physics-based/ Data-driven Diesel Engine Waste Heat Recovery and Hybrid Vehicle Propulsion System Energy Management for Fuel Efficiency Improvement

Dr. Bin Xu, a Research Assistant Professor for the Department of Automotive Engineering at Clemson University, gave a seminar on Monday, March 8 over “Physics-based/ Data-driven Diesel Engine Waste Heat Recovery and Hybrid Vehicle Propulsion System Energy Management for Fuel Efficiency Improvement.”

Abstract: For internal combustion engines, the engine efficiency is generally below 40% for gasoline engines and 50% for diesel engines. For a heavy-duty diesel engine, around 40-60% of energy is wasted as heat via exhaust gas, EGR cooler, and coolant. Waste heat recovery (WHR) techniques have the potential to achieve the fuel economy and emission reduction goals for its mature technology and high efficiency. Conventional modeling and power analysis in WHR system focus on static engine operating conditions, whereas engine experiences torque variation even at highway conditions. To overcome the research gaps in dynamic modeling, control and optimization over highly transient engine operating conditions, a series of systematic modeling, control, optimization and experimental validation work are conducted to understand the characteristics of the WHR system and maximize the waste energy recovery. According to dyno test result, 3% absolute break thermal efficiency improvement is achieved in a 13L diesel engine with the developed WHR system.

The automotive industry is in the pace of reforming from petroleum-dependent to renewable energy-dependent for better sustainability and environmental friendly goals. Hybrid Electric Vehicle (HEV) is the first step towards the propulsion system electrification. With a given vehicle hardware, one key factor affecting the fuel consumption is the energy management of the engine and the electric motor, which could lead to 20% fuel consumption variation. Conventional energy management strategies (EMS) are either rule-based or model-based. Rule-based EMS lacks optimization and leaves large room for fuel saving. Model-based EMS like model predictive control depends on reduced order models, which require long time to build for the complex vehicle propulsion system and sacrifice model accuracy for short computation time. Model- free reinforcement learning (RL) based EMS is proposed to address the optimization concern of rule-based methods and reduced order model development concern of model-based methods. Parametric study is conducted to interpret the RL state/ action/ reward selection and their impact on fuel economy, which is supported by value functions and policy maps. An ensemble RL framework is proposed to integrate RL with conventional EMS methods for better fuel economy. Moreover, two warm start methods are proposed to reduce the learning time of RL as much as 68%.

Bio: Bin Xu joined the Department of Automotive Engineering, Clemson University in March 2020 as a Research Assistant Professor. Prior to coming to Clemson, Dr. Xu was a Research Scientist at the Stanford University. Dr. Xu received his B.S. degree from Hunan University China in 2013, Ph.D. from Clemson University in 2017, both in Automotive Engineering. Dr. Xu’s research focus on propulsion system modeling and control, particularly in the areas of physics-based and data-driven modeling, control, and fuel efficiency optimization. Over the past 4 years, Dr. Xu has published 31 peer-reviewed articles including 13 first-authored journal articles and his research have been cited 337 times in Google Scholar. Dr. Xu is the Guest Editor of SAE International Journal of Electrified Vehicles and a Review Editor of Frontiers in Energy Research. Additionally, Dr. Xu serves as the reviewer for 10+ journals in energy and transportation fields, such as Renewable and Sustainable Energy Reviews, Applied Energy, and IEEE Transactions on Intelligent Transportation Systems.


Dr. Elham Mirkoohi Gives Seminar Over Process Prediction and Optimization of Metals Additive Manufacturing

On March 5, Dr. Elham Mikoohi gave a presentation on, “Process Prediction and Optimization of Metals Additive Manufacturing.” Dr. Mikoohi is a postdoctoral scholar research associate in the Department of Mechanical Engineering at Georgia Institute of Technology.

Abstract: In the past few years, the second wave of digital manufacturing – additive manufacturing– has received a technological breakthrough. Although additive manufacturing has the potential to revolutionize the way products are produced, the process prediction and optimization of additive manufacturing have not yet been in a place where the parts can be manufactured with high quality and performance, and it currently involves lots of trial and errors which would take months or even years to come up with the desired part performance with millions of dollars investments. To break through the technology bottlenecks, accurate and high computationally efficient frameworks are required to simulate the multi-physics aspects of additive manufacturing processes. In this seminar, Dr. Mirkoohi will present her research efforts focused on the development of low-cost physics-based computational framework to predict the key additive manufacturing attributes including temperature field, thermal stress distribution, residual stress distribution, and the microstructural evolution to be derived as explicit functions of the metal powder starting properties and additive manufacturing process parameters. She will show how these physics-based computational models can cooperatively work together in a small fraction of the time needed for finite element simulation or full-physics simulation. In addition, she will present a combined physics-based machine learning platform that is developed to assess the process maps to guide the process parameters in achieving desired part performance.

Bio: Elham Mirkoohi is a postdoctoral scholar research associate in the Department of Mechanical Engineering at Georgia Institute of Technology, working with Professor Surya Kalidindi and Professor Aaron Stebner. She is also the executive coordinator of Novelis Innovation Hub at Georgia Institute of Technology. She received her Ph.D. in mechanical engineering from Georgia Institute of Technology, where she was advised by Professor Steven Liang and Professor Hamid Garmestani, and B.Sc. and M.Sc. from University of Tehran and Oregon State University, respectively. Elham worked at Tesla Motors and the Boeing Company as a research intern and research assistant, respectively. Elham Mirkoohi’s convergence research spans mechanical engineering, materials science and engineering, and computer science. Her cross-disciplinary research focuses on modeling, monitoring, control, and optimization of precision manufacturing. She has authored more than 25 Journal and conference papers in top-ranked Journals and conferences in the field of advanced manufacturing. She also serves as a program committee of several conferences and as a reviewer for more than 15 Journals and conferences in her field.


Dr. Rong Gan Recognized by OU on International Women and Girls in STEM Day

AME’s Dr. Rong Gan was recognized by OU on International Women and Girls in STEM Day. The full article can be found below or through this link: Congratulations Dr. Gan!

Rong Zhu Gan is a Presidential Research Professor and the Charles E. Foster Chair in the Gallogly College of Engineering, Department of Aerospace and Mechanical Engineering. Her current research is supported by the Department of Defense and explores blast exposure hearing loss.

Supported by a $2.5 million DoD grant to understand blast-induced hearing loss by using biomedical measurement, her team developed the first 3D computational model to predict the blast wave transmission outside into the cochlear. A current grant extends that work to explore a cure for blast-induced hearing loss by using a leading diabetes drug that has the potential to recovery sensory auditory damage.

Gan has two patents currently under review, adding to two previous patent awards. One of the patents being reviewed is for use of the diabetes drug to treat trauma-induced hearing loss; the other is for mid-ear reconstruction using a 3D printer that can print soft and hard tissue.

Rong Gan Portrait

She said she likes the challenge of studying hearing and her work has made others take notice, including being asked to serve on the DoD’s Congressionally Directed Medical Research Programs. The CDMRP aims to advance medical and scientific research and fill research gaps by funding high-impact, high-risk and high-gain projects that other agencies may not venture to fund.

“Hearing is a challenge,” Gan said. “Also hearing is more close to the patient, to the benefit of society. It is not the pure, basic research. We are close to real society…I am very honored to be a part of the CDMRP panel to determine this funding.”

Gan’s research success is made all the more impressive by the perseverance that presided it.

Born in Wuhan, China, Gan’s educational opportunities were limited during the Cultural Revolution in China. She trained as a mechanical engineer and worked at a car manufacturing company from 1968 to 1978. With the end of the Cultural Revolution, she went back to school to pursue a graduate education, changing her area of study from mechanical engineering to biomechanics.

“In 1978, I met the father of biomechanics or biomedical engineering, YC Fung from the U.S., when he visited Huazhong University of Science and Technology,” she said. “Since then, I was YC Fung’s student.”

Yuan-Cheng “Bert” Fung was an American bioengineer, regarded as a founding figure of bioengineering, tissue engineering, and the “Founder of Modern Biomechanics.”

In 1983, Fung hosted the first U.S., China and Japan biomechanics conference at the Huazhong University of Science and Technology in Wuhan. Gan was a master’s student at the time and reported her first scientific paper during that meeting.

She wanted to study with Fung in his lab at U.C. San Diego, but didn’t have the English language skills to pass the entrance exam. Instead, she used Russian as her foreign language to complete a master’s degree in mathematics at the University of Alberta Edmonton, Canada.

Fung and Gan crossed paths again in 1988 at a conference in Ottawa, where he introduced her to his former student, Michael Yen, who had started a biomedical engineering program at the University of Memphis. Gan completed her doctorate in biomedical engineering from the University of Memphis in 1992.

“My Ph.D. is in pulmonary blood flow in the lung biomechanics,” she said. “That was YC Fung’s direction. Later on, after my short postdoctoral period in New Mexico, I came to Oklahoma in 1995, totally changing my direction into hearing and the auditory system. I came to Oklahoma to be the director for hearing implantable devices at the Hough Ear Institute.”

Gan helped gain the institute’s first FDA-approved mid-ear implantable device.

In 1998, OU received a Special Opportunity Award to develop a biomedical engineering program, the first program of its kind in the region. Gan became the first biomedical engineering faculty member at OU. It began as a graduate program in 2003 and expanded to an undergraduate degree in 2016.

“You can see in my training how broad my background was. YC Fung is my mentor,” Gan said. “He introduced me to these new fields, biomechanics and biomedical engineering. He was the first advisory board member for (OU’s) biomedical engineering.”

Gan now pays that mentorship forward with students in her own lab.

“I always get very good students from the biomedical engineering department, and I love to teach and to mentor students,” she said. “In any lab, if you want to be successful, you must look for new direction. No matter your skin color or where you come from, you have to work hard. You must build your motivation for the science…you love the discussion, the discovery, to solve the unknown questions. I believe motivation is very important and finding a good mentor.”

She adds that a good professor is responsible for providing guidance to show students what is important, but a student’s success depends on their own motivation.

“Any success depends on yourself,” she said. “No matter what environment, persevere, work hard. If you really want to jump into science and technology, you need to have experience.”

AME Alumni Highlights: Dr. Amber Walker and Tayera Ellis

AME is delighted to have such talented Alumni who continue to make us proud after graduation. This week, we’re highlighting Dr. Amber Walker, who attended graduate school in 2010, and Tayera Ellis, who received her aerospace engineering degree in 2018.

Amber Walker, PhD

I’m currently in-between positions.  I just concluded a 3.5-year tour as a Program Manager at the Defense Advanced Research Projects Agency (DARPA) and will soon be taking up a position leading Autonomous Systems strategy at Raytheon BBN.

I have had a varied career between active duty military service and my academic pursuits.  As an Army officer, I’ve served as a communications officer and operations researcher in between degrees at Oxford and OU.  I have designed and taught engineering curriculum at the United States Military Academy and advised undergraduate research, served in technical workforce development roles (recruitment and training), and most recently held a position as a Research and Development Program Manager responsible for the cost, schedule, and technical achievement of a portfolio of military defense projects – primarily aligned to the US Army – at the Defense Advanced Research Projects Agency. I was responsible for defining problems, creating the means by which to solve them with large and small businesses alike, and overseeing the accomplishments of those performers for the life of the project.  I’ve done this with advanced missile systems and rockets, ground vehicles, novel human interfaces, self-reconfigurable modular robotics, and more.

I did my undergraduate degree at West Point in Mechanical/Aeronautical Engineering.  I had a number of unique and rewarding experiences there including a capstone project, flight laboratories aboard both Cessna fixed wing and Huey rotary wing platforms, trips to Cape Canaveral, and more.  In 2004 I was awarded a Rhodes Scholarship and began my two-year journey at Oxford, which was a much different experience than US-based graduate school. I took no courses, but instead worked for 20 months on a dissertation and viva related to ‘Fast Crack Propagation in Ductile Metals.’  I primarily investigated how we could use empirical evidence to improve finite element models to support the validation and testing of two metal alloys for Rolls Royce (civil air) and BMW (automobiles).  Finally, I had the opportunity to return to graduate school at OU in 2010 where I shifted my focus away from solid mechanics and into Human-Robot Interaction. I made this move following my experience as a military officer deployed to Iraq having watched the Army struggle to fully adopt a new radio system.  While technically more capable, the system suffered from poor user interface design and inspired me to focus on user-centered design, which I applied to robotics under Professor David Miller.  That really started my pivot into autonomous systems and advanced ground robots as well as wearables and I’m still passionate about creating technology that is intuitive, useful, and performance-enhancing.

Both of my graduate degrees have been paramount to achieving my professional goals and my growth as a leader in the field of autonomous systems and mechanical engineering.  I credit them with the ability to clearly communicate difficult technical subjects, both in writing and verbally, as well as exposing me to problems and solutions across multiple topic areas.  It’s amazing how often my experience from a machine shop (G-code) or design of experiments is called upon!  Further, I’ve really treasured the friends and colleagues with whom I’ve been able to work and the network of brilliant people that I can call upon.

Some of my favorite memories I have as an OU student include cleaning out the lab and then heading to Pepe’s for Mexican food (which is still way better in Oklahoma than in DC), stealing a parking space from Tai, any football game, and all the snow days!!  I think my first January back we were only on campus for 5 days 🙂

I had my first child while at OU, and it shows…he’s a HUGE Sooner football fan.  It is possible, with the right partner, to have meaningful academic and professional success while building a family and enjoying a work/life balance. It’s not always easy, and it does require commitment, but it is possible.  I’m encouraged to see more and more men and women finding a balance that suits their personal goals.

Tayera Ellis

I currently serve as a Test Director for space environmental tests. This role includes test planning, coordinating, and providing engineering modifications to test facilities. I brief and train test subjects, including astronauts, in the operation of test systems and training with the Extravehicular Mobility Unit (EMU).

I have a B.S. in Aerospace Engineering, Class of 2018. I was a 4-time NASA intern, and Stress Engineering Intern for Spirit AeroSystems.

As an engineer in the industry, I don’t use much of the technical portion of my engineering degree, however, I do continue to use the skills I developed for studying and learning. Getting an aerospace engineering degree took patience and persistence, and many challenges in my career also take the same virtues.

My favorite memory as an OU Student was graduation.

It’s important for students to keep moving forward. Although classes are tough and highly technical, once you are working as an engineer in the industry, you will have opportunities to continue learning on the job and gain knowledge from other engineers with 20+ years of experience. Don’t give up, because the outcome is worth all the hard work!


Applications are Open for the NASA JSC Pathways Program


The NASA JSC Pathways Program applications open today, September 14, 2020, and Abigail Moore, an AME student in the Pathways Program, wants to encourage other students to apply.

“I can’t recommend it enough to other OU engineering students,” Moore said. “I’ve met some of my best friends, learned things years ahead of my classes, and worked on things that will go to space before I graduate!”

“NASA is looking for well-rounded students who are self-motivated, passionate and want to join our ranks as we lead human space exploration. This position provides students with the opportunity to explore NASA careers and gain meaningful developmental work experience. The Pathways internship employment program is a co-op program where students rotate semesters between school and interning at Johnson Space Center working on projects from designing spacesuit helmets to teaching astronaut training classes to destructive battery testing. The Pathways program also provides the best path to a full-time job with the agency as a civil servant upon graduation,” Moore said.

Announcements are posted to on 9/14/20 and will stay open for 1-2 days. Students can prepare to apply by developing a profile in USAJobs ahead of time, building their resume, and creating a notification for NASA Pathways Intern opportunities that will alert them when the announcements open. If anyone has any questions, they can visit the website or contact Abigail Moore directly at

How to Prepare

1. Go to USAJOBS.GOV to create an account. Click on ‘create a account’ in the orange box and follow the prompts. Once you have created your account on, click ‘continue’ to log back into USAJOBs.

2. Create a profile. Before you can apply, you will need to complete your profile. Select ‘Complete Profile.’

3. Build your Resume: After you complete your profile, you can build your resume.  It is key that you do this before the announcement comes out.

4. Set up a Job Alert: Create an alert through the “saved search” function. Saved searches will automatically search for jobs based on your search criteria and email you when there are new jobs available. Pathways announcements are listed as “Student Trainee” roles.

5. Once you have set up your alert, you will be notified when Pathways vacancies open. Once you find an opportunity, follow the instructions in the “How to Apply” section of the announcement.

One important note: Each job announcement will be considered closed at 10:59 p.m. CST on either the date that a specific number of applications are received or on 9/16/20, whichever occurs first.

You can find more info on the program, including qualifications, here:

Dr. SeungYeon Kang Gives Seminar over Advanced Laser-Materials-Processing Techniques for Nanofabrication of Functional Materials and Energy Harvesting Devices

SeungYeon Kang, Ph.D. presented a seminar Friday, March 6, over, “Advanced Laser-Materials-Processing Techniques for Nanofabrication of Functional Materials and Energy Harvesting Devices.” Dr. Kang is a Program Manager for NSF’s SHAP3D additive manufacturing center at the University of Connecticut.

Abstract: Increasing number of novel materials, structures and device are being designed every day to revolutionize our future. Accordingly, new fabrication methods to complement the designs must be developed for actual realization of the devices. In this talk I’ll start by discussing the use of ultrafast lasers for advanced materials processing techniques and the significance of developing new nanofabrication methods for cost-effective manufacturing and rapid prototyping with high accuracy. The focus of my talk will be on a novel direct laser writing technique that enables fabrication of 3D metal-dielectric nanocomposite structures of tunable dimensions ranging from hundreds of nanometers to micrometers. This true 3D patterning technique utilizes nonlinear optical interactions between chemical precursors and femtosecond pulses to go beyond the limitations of conventional fabrication techniques that require multiple postprocessing steps and/or are restricted to fabrication in two dimensions. The first part of the talk will end with a further discussion on possible applications including metamaterials, graphene-based devices and etc. In the shorter second part of the talk, I’ll introduce a relatively new material of research interest called piezoelectrochemical materials and another advanced laser-materials-processing technique that utilizes laser induced forward transfer (LIFT). I’ll end with a discussion on how one can use these two research areas to develop energy harvesting devices that convert ambient mechanical energy into electrochemical energy.

Biography: Dr. SeungYeon Kang is currently the program manager for NSF’s SHAP3D additive manufacturing center at University of Connecticut. Her research interests are focused on advanced laser materials processing techniques, fundamental principles and application of light-matter interaction, nanofabrication and energy technology. She obtained her B.A. degree from Cornell University in chemical engineering and received her Ph.D. degree in applied physics from Harvard University, where she focused on ultrafast laser processing of materials and developed a novel 3D nanofabrication technique. After her graduate studies, she worked at Samsung SDI as a senior research engineer on lithium ion batteries and at Princeton University as a postdoctoral research associate. Her various research resulted in several patents and she is the recipient of Samsung SDI Scholarship, Harvard University Center for the Environment (HUCE) research Fellowship and Princeton Postdoctoral Fellowship in scientific writing.

Dr. Sergey Averkin Gives Seminar Over Kinetic Simulations of Non-equilibrium Phenomena in Partially Ionized Plasmas

Sergey Averkin, Ph.D., a Research Scientist from Tech-X Corporation, gave a seminar Friday, February 28. He spoke about, “Kinetic Simulations of Non-equilibrium Phenomena in Partially Ionized Plasmas.”

Abstract: Partially ionized plasmas have many applications in science and engineering. The examples of applications include space propulsion, material processing including production of nanomaterials, ion sources, display panels, medicine. Modeling and simulation of non-equilibrium chemically reacting plasmas is a challenging problem owing to the presence of complicated plasma chemistry and coupling between volume, surface, and transport non-equilibrium processes. Simulation approaches span from volume averaged global models that incorporate thousands of chemical reactions and include simplified assumptions regarding transport to computationally expensive kinetic simulation methods that allow to calculate detailed information of plasma transport and usually employ simplified chemical models to speedup simulations.

The first part of the talk presents a Global Enhanced Vibrational Kinetic (GEVKM) model and its application to the simulation of an RF discharge chamber of a new High Current Negative Hydrogen Ion Source developed by Busek Co. Inc. and WPI. The GEVKM is supplemented by a comprehensive set of surface and volumetric chemical processes (22 species and more than 1000 chemical reactions) governing vibrational and ionization kinetics of hydrogen plasmas. The model is computationally efficient. It was used in parametric studies with thousands of points in parameter space.

The second part of the talk outlines new developments in the Particle-in-Cell and Direct Simulation Monte Carlo methods (PIC/DSMC) that are used to model partially ionized plasmas and rarefied gases that are described by kinetic equations coupled with the Poisson equation. The PIC/DSMC method can provide detailed information of the distribution functions of plasma components in complicated geometries. The applications of the PIC/DSMC method to simulations of flows inside nanonozzles and around CubeSat are presented. In addition, novel simulations of plasma assisted growth of nanoparticles using PIC/DSMC method are discussed.

Biography: Dr. Sergey N. Averkin received the B.S. and M.S. degrees in applied mathematics and physics from the Moscow Institute of Physics and Technology, Moscow, Russia, in 2007 and 2009, respectively, and the Ph.D. degree in aerospace engineering from the Worcester Polytechnic Institute (WPI), Worcester, MA,  in 2015. From 2015 to 2016, he was a Post-Doctoral Fellow and an Adjunct Teaching Professor at WPI. In 2018 Dr. Averkin was a Research Associate at the University of Colorado Boulder. Currently he is a Research Scientist at the Tech-X Corporation, Boulder, CO, USA. His current research interests include advanced numerical simulations of nonequilibrium phenomena in chemically reacting rarefied gases and plasmas. Applications of such simulations include space propulsion, mass and heat transport at micro and nano scales, ion sources, plasma processing. Dr. Averkin is a member of the American Physical Society (APS) and the Institute of Electrical and Electronics Engineers (IEEE).

Dr. Woong-Yeol Joe Gives Seminar Over Design and Control of a Camber Morphing Wing Aircraft

On Friday, February 21, Woong-Yeol Joe, Ph.D. gave a seminar over, “Design and Control of a Camber Morphing Wing Aircraft.” Dr. Joe is an Associate Professor from the Department of Mechanical and Manufacturing Engineering at Tennessee State University.

Abstract: Wing morphing technologies in general aim to optimize aircraft’ efficiency by changing and adjusting the shape of wings in compliance to corresponding flight conditions. Among many types of wing morphing, suggested variable camber compliant morphing in airfoil morphing enables aircraft to have seamless, conformal, and energy and noise effective change of wing geometry that significantly reduces drag force or lift-drag ratio. Unlike typical approaches of using smart materials or partial morphing of trailing-edge, mechanism-driven camber morphing wing via linear actuators enables fixed wing aircraft wing to adjust camber rates conformally, dynamically, and firmly along the wing span. For realization of actual flight and control of camber morphing wing aircraft, it is of interest (1) to investigate the nature of structural and aerodynamical behaviors of camber morphing wings while flight, (2) to study difference and similarity between the conventional wing and the camber morphing wings in control aspects, (3) to design and implement the skin structure of camber morphing wings along with characteristics of 3D printed structure. This presentation covers overview of morphing technologies, motivation and benefits of camber morphing, design of control allocation aspect of camber morphing wings, and design and implementation of skin structure for camber morphing wings with perspectives of 3D/4D printing.

Biography: Dr. Woong Yeol Joe is a tenured Associate Professor in the Department of Mechanical and Manufacturing Engineering at Tennessee State University (TSU), Nashville TN. Currently, he is doing his first sabbatical year at ORNL (Oak Ridge National Laboratory), Knoxville TN focused on 3D/4D manufacturing technology. Before he joined it in fall 2014 at TSU, he was working as a tenure-track Assistant Professor at Embry-Riddle Aeronautical University during 2011-2014 and Florida State University as Research Associate during 2010-2011. His main research interests are 1) design and control of morphorous structures (4D printing), 2) design of flight control systems, and 3) dynamics/kinematics and mechanism design of mechanical systems in the applications of aerospace, mechanical, and robotic systems. He earned his Ph.D. in Mechanical Engineering from Columbia University, NY in 2010, M.S. in Mechanical Engineering from New York University, NY in 2006, and B.S in Electrical Engineering from Hong-iK University in 2003.

Dr. Song Receives Multiple Awards for Current Research

Dr. Li Song, an associate professor at AME, received three awards for her current research projects. Two awards are from the Department of Energy, and the third award is from Battelle – Pacific Northwest National Laboratory.

Song is the lead PI for the development and validation of a home comfort system for total performance deficiency/fault detection and optimal control project, which received a DOE fund of $993,149. The research team will develop and validate a smart thermostat-integrated low-cost home energy management system, including a data connection framework; a computationally efficient, self-learning home thermal model; automatic fault detection and analysis algorithms; and home energy management information and controls based on in-situ measured efficiencies of heating and cooling equipment, the air distribution system, and the building envelope.

The second DOE fund is $551,566 for the performance demonstration of an occupancy sensor-enabled integrated solution for commercial buildings project. The research team will validate the performance and savings of three HVAC control (fan, cooling coil valve, outside air) algorithms integrated with occupancy sensing data to optimize ventilation delivery.

A $50,000 award was given to Song from Battelle – Pacific Northwest National Laboratory for her “Transactive-Control Based Connected Home Solution for Existing Residential Units and Communities” project.

This is a summary of Song’s research proposal sent to Battelle: To obtain the overall project aims, the development of machine learning techniques to calibrate the initial physical model that estimates and predicts energy use of a house and its response to control signals is extremely important. An effective home thermal model, that can predict the indoor air temperature dynamics under different weather, HVAC output and internal gains from appliances and occupants, is essential for the development.

BEEL initiated the development of a self-learning home thermal model two years ago. The BEEL home model, currently limited for a house with an A/C and gas-furnace heater, can automatically identify the model parameters with minimum data needed and precisely predict the space temperature and home HVAC energy uses for a house. To enhance the connectivity and compatibility of the platform proposed by PNNL, BEEL is committed to expand the home thermal model for a heat pump system and test enhanced home model using two houses located in Oklahoma through the partnership with OG&E. The challenge of modeling the heat pump is that the heating output from a heat pump is no longer constant as-is for a gas furnace heater. A correlation of the heating output of a heat pump and outdoor air temperature needs to be formulated and similarly, a correlation between cooling output of a heat pump and weather might be needed for cooling season as well.

Congratulations Dr. Song!

Additional News About Dr. Song’s Research:
Dr. Song’s Research is Promoted in the Press
Dr. Song Receives 2018 ASHRAE Technical Paper Award